A comprehensive review of the recent advances on predicting drug-target affinity based on deep learning

深度学习 人工智能 机器学习 计算机科学 药物重新定位 卷积神经网络 背景(考古学) 人工神经网络 重新调整用途 药品 工程类 医学 生物 古生物学 精神科 废物管理
作者
Xin Zeng,Shujuan Li,Shuangqing Lv,Meng‐Liang Wen,Yi Li
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:15 被引量:2
标识
DOI:10.3389/fphar.2024.1375522
摘要

Accurate calculation of drug-target affinity (DTA) is crucial for various applications in the pharmaceutical industry, including drug screening, design, and repurposing. However, traditional machine learning methods for calculating DTA often lack accuracy, posing a significant challenge in accurately predicting DTA. Fortunately, deep learning has emerged as a promising approach in computational biology, leading to the development of various deep learning-based methods for DTA prediction. To support researchers in developing novel and highly precision methods, we have provided a comprehensive review of recent advances in predicting DTA using deep learning. We firstly conducted a statistical analysis of commonly used public datasets, providing essential information and introducing the used fields of these datasets. We further explored the common representations of sequences and structures of drugs and targets. These analyses served as the foundation for constructing DTA prediction methods based on deep learning. Next, we focused on explaining how deep learning models, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Transformer, and Graph Neural Networks (GNNs), were effectively employed in specific DTA prediction methods. We highlighted the unique advantages and applications of these models in the context of DTA prediction. Finally, we conducted a performance analysis of multiple state-of-the-art methods for predicting DTA based on deep learning. The comprehensive review aimed to help researchers understand the shortcomings and advantages of existing methods, and further develop high-precision DTA prediction tool to promote the development of drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缪尔岚完成签到,获得积分10
刚刚
CQ完成签到,获得积分10
1秒前
1秒前
飞快的珩发布了新的文献求助10
2秒前
2秒前
LIKUN发布了新的文献求助10
2秒前
carbon-dots完成签到,获得积分10
2秒前
完美世界应助luffy采纳,获得10
2秒前
无花果应助jin采纳,获得10
3秒前
科研通AI2S应助David采纳,获得10
3秒前
毛豆应助江河不可停采纳,获得10
3秒前
破防怪发布了新的文献求助30
4秒前
hzxy_lyt应助mara采纳,获得10
4秒前
lllll关注了科研通微信公众号
5秒前
sakura发布了新的文献求助10
5秒前
6秒前
6秒前
1GE发布了新的文献求助10
7秒前
lzy发布了新的文献求助10
7秒前
7秒前
汉堡包应助听雨采纳,获得10
8秒前
要减肥雪碧关注了科研通微信公众号
11秒前
小蘑菇应助ppg123采纳,获得10
11秒前
12秒前
大个应助奶昔采纳,获得10
13秒前
希望天下0贩的0应助sakura采纳,获得10
13秒前
niklauscheung完成签到,获得积分10
13秒前
13秒前
Orange应助拉长的念珍采纳,获得10
14秒前
一叶扁舟完成签到,获得积分10
14秒前
15秒前
勤劳代亦完成签到,获得积分20
15秒前
一方完成签到,获得积分10
16秒前
儒雅沛蓝完成签到,获得积分10
16秒前
hzxy_lyt应助Francis采纳,获得10
17秒前
17秒前
18秒前
19秒前
Gary发布了新的文献求助10
19秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312373
求助须知:如何正确求助?哪些是违规求助? 2945014
关于积分的说明 8522631
捐赠科研通 2620796
什么是DOI,文献DOI怎么找? 1433057
科研通“疑难数据库(出版商)”最低求助积分说明 664824
邀请新用户注册赠送积分活动 650187