An Improved YOLOv5 for High-Resolution Ore Image Detection

高分辨率 计算机科学 人工智能 计算机视觉 图像(数学) 模式识别(心理学) 地质学 遥感
作者
Yimu Ji,Shijun Lin,Xiaoliang Yao,Chaojun Mei,Mengwei Chen,Shuai You,Shangdong Liu
标识
DOI:10.1109/cac59555.2023.10451374
摘要

During ore dressing production, the size of the ore significantly affects the grinding and classification efficiency and is a crucial control parameter. In the past, most ore image detection algorithms focused on the detection tasks of high-resolution ore image. At the same time, due to the sparse data set for industrial production applications, the generalization ability and robustness of the model are low, and it has poor performance on tiny ore target detection tasks. To remedy these shortcomings, this paper proposes the ODA-YOLOv5 network model for ore image detection. In this paper, we adopt a multi-scale training strategy to address the difficulty of detecting tiny ores in high-resolution images. A self-built dataset is constructed by fusing multi-scale ore images. The input image size is dynamically adjusted during training to enhance the robustness of the detection model for ore of different scales. In order to improve the performance of the detection algorithm, we introduce the C3-ECA attention module, which fully takes into account the local cross-letter road interactions and considerably reduces the model complexity. Our algorithm achieves approximately 97.9% mAP and approximately 62.11 FPS on the self-built dataset. Our algorithm sufficiently demonstrates the superiority of our detection model algorithm for industrial ore detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浅言完成签到 ,获得积分10
1秒前
飞快的珩发布了新的文献求助10
2秒前
SciGPT应助小花采纳,获得50
3秒前
SciGPT应助李,,,,采纳,获得10
3秒前
小祝发布了新的文献求助10
4秒前
班小班完成签到,获得积分10
4秒前
王俊茹发布了新的文献求助10
4秒前
eleven完成签到,获得积分10
5秒前
forstudy完成签到 ,获得积分10
5秒前
水濑心源发布了新的文献求助10
6秒前
涨芝士完成签到 ,获得积分10
6秒前
tt完成签到 ,获得积分10
8秒前
9秒前
诚心千山完成签到,获得积分10
10秒前
y彤完成签到,获得积分10
10秒前
11秒前
oo完成签到,获得积分10
12秒前
花成花完成签到,获得积分20
12秒前
lilylian完成签到,获得积分10
13秒前
我不困完成签到,获得积分10
16秒前
16秒前
傻瓜子发布了新的文献求助10
16秒前
xiaozhang完成签到 ,获得积分10
16秒前
18秒前
明8完成签到,获得积分10
18秒前
18秒前
野性的凡蕾完成签到,获得积分10
19秒前
打打应助天天快乐采纳,获得30
19秒前
20秒前
开心的小馒头完成签到,获得积分10
20秒前
轻松博超完成签到,获得积分10
21秒前
TheDing完成签到,获得积分10
22秒前
科研通AI2S应助DDDOG采纳,获得10
23秒前
24秒前
Andy完成签到 ,获得积分10
25秒前
26秒前
baolong完成签到,获得积分10
26秒前
清脆的连虎完成签到,获得积分10
27秒前
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761129
求助须知:如何正确求助?哪些是违规求助? 3305049
关于积分的说明 10132066
捐赠科研通 3019064
什么是DOI,文献DOI怎么找? 1657959
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754604