Cross-subject EEG emotion recognition using multi-source domain manifold feature selection

计算机科学 模式识别(心理学) 人工智能 学习迁移 分类器(UML) 条件概率分布 特征选择 歧管对齐 机器学习 非线性降维 数学 降维 统计
作者
Qingshan She,Xinsheng Shi,Feng Fang,Yuliang Ma,Yingchun Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:159: 106860-106860 被引量:10
标识
DOI:10.1016/j.compbiomed.2023.106860
摘要

Recent researches on emotion recognition suggests that domain adaptation, a form of transfer learning, has the capability to solve the cross-subject problem in Affective brain-computer interface (aBCI) field. However, traditional domain adaptation methods perform single to single domain transfer or simply merge different source domains into a larger domain to realize the transfer of knowledge, resulting in negative transfer. In this study, a multi-source transfer learning framework was proposed to promote the performance of multi-source electroencephalogram (EEG) emotion recognition. The method first used the data distribution similarity ranking (DDSA) method to select the appropriate source domain for each target domain off-line, and reduced data drift between domains through manifold feature mapping on Grassmann manifold. Meanwhile, the minimum redundancy maximum correlation algorithm (mRMR) was employed to select more representative manifold features and minimized the conditional distribution and marginal distribution of the manifold features, and then learned the domain-invariant classifier by summarizing structural risk minimization (SRM). Finally, the weighted fusion criterion was applied to further improve recognition performance. We compared our method with several state-of-the-art domain adaptation techniques using the SEED and DEAP dataset. Results showed that, compared with the conventional MEDA algorithm, the recognition accuracy of our proposed algorithm on SEED and DEAP dataset were improved by 6.74% and 5.34%, respectively. Besides, compared with TCA, JDA, and other state-of-the-art algorithms, the performance of our proposed method was also improved with the best average accuracy of 86.59% on SEED and 64.40% on DEAP. Our results demonstrated that the proposed multi-source transfer learning framework is more effective and feasible than other state-of-the-art methods in recognizing different emotions by solving the cross-subject problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助芬芬采纳,获得30
刚刚
彭于晏应助HEIHEI采纳,获得10
刚刚
yuko完成签到,获得积分10
2秒前
fqk完成签到,获得积分10
3秒前
yx_cheng应助ash采纳,获得10
4秒前
4秒前
7秒前
8秒前
善学以致用应助shinn采纳,获得10
9秒前
10秒前
WW发布了新的文献求助10
12秒前
wzhang完成签到,获得积分10
13秒前
闹南南完成签到,获得积分10
14秒前
zjzjzjzjzj完成签到 ,获得积分10
14秒前
14秒前
HEIHEI发布了新的文献求助10
14秒前
15秒前
Vicky完成签到 ,获得积分10
15秒前
15秒前
小鱼干发布了新的文献求助10
15秒前
思源应助柒啊柒la采纳,获得10
17秒前
19秒前
牛仔完成签到 ,获得积分10
19秒前
20秒前
闹南南发布了新的文献求助10
20秒前
小马甲应助董坤瑶采纳,获得10
21秒前
21秒前
21秒前
22秒前
小鱼干完成签到,获得积分20
22秒前
Marya发布了新的文献求助10
23秒前
25秒前
shinn发布了新的文献求助10
25秒前
lvlv发布了新的文献求助10
28秒前
体贴汽车发布了新的文献求助10
28秒前
清脆南蕾发布了新的文献求助10
28秒前
30秒前
31秒前
魔猿应助fdpb采纳,获得10
31秒前
爆米花应助cllll采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512526
关于积分的说明 11163850
捐赠科研通 3247430
什么是DOI,文献DOI怎么找? 1793831
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804494