亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-subject EEG emotion recognition using multi-source domain manifold feature selection

计算机科学 模式识别(心理学) 人工智能 学习迁移 分类器(UML) 条件概率分布 特征选择 歧管对齐 机器学习 非线性降维 数学 降维 统计
作者
Qingshan She,Xinsheng Shi,Feng Fang,Yuliang Ma,Yingchun Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:159: 106860-106860 被引量:36
标识
DOI:10.1016/j.compbiomed.2023.106860
摘要

Recent researches on emotion recognition suggests that domain adaptation, a form of transfer learning, has the capability to solve the cross-subject problem in Affective brain-computer interface (aBCI) field. However, traditional domain adaptation methods perform single to single domain transfer or simply merge different source domains into a larger domain to realize the transfer of knowledge, resulting in negative transfer. In this study, a multi-source transfer learning framework was proposed to promote the performance of multi-source electroencephalogram (EEG) emotion recognition. The method first used the data distribution similarity ranking (DDSA) method to select the appropriate source domain for each target domain off-line, and reduced data drift between domains through manifold feature mapping on Grassmann manifold. Meanwhile, the minimum redundancy maximum correlation algorithm (mRMR) was employed to select more representative manifold features and minimized the conditional distribution and marginal distribution of the manifold features, and then learned the domain-invariant classifier by summarizing structural risk minimization (SRM). Finally, the weighted fusion criterion was applied to further improve recognition performance. We compared our method with several state-of-the-art domain adaptation techniques using the SEED and DEAP dataset. Results showed that, compared with the conventional MEDA algorithm, the recognition accuracy of our proposed algorithm on SEED and DEAP dataset were improved by 6.74% and 5.34%, respectively. Besides, compared with TCA, JDA, and other state-of-the-art algorithms, the performance of our proposed method was also improved with the best average accuracy of 86.59% on SEED and 64.40% on DEAP. Our results demonstrated that the proposed multi-source transfer learning framework is more effective and feasible than other state-of-the-art methods in recognizing different emotions by solving the cross-subject problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
Fab4发布了新的文献求助10
1秒前
3秒前
5秒前
7秒前
14秒前
冷艳的语雪完成签到 ,获得积分10
19秒前
19秒前
Lulu完成签到 ,获得积分10
30秒前
英姑应助残月初升采纳,获得10
33秒前
医学完成签到,获得积分10
34秒前
暮商完成签到 ,获得积分10
37秒前
hirono完成签到 ,获得积分10
39秒前
42秒前
Fab4完成签到,获得积分20
50秒前
星辰大海应助马克采纳,获得10
52秒前
导师的心腹大患V完成签到,获得积分10
57秒前
科研通AI2S应助Percy采纳,获得10
59秒前
余灿完成签到,获得积分20
59秒前
1分钟前
马克发布了新的文献求助10
1分钟前
阿然发布了新的文献求助10
1分钟前
落寞的寒云完成签到 ,获得积分10
1分钟前
1分钟前
燕麦大王完成签到,获得积分10
1分钟前
阿宁完成签到 ,获得积分10
1分钟前
1分钟前
小夏饭桶应助27小天使采纳,获得30
1分钟前
1分钟前
余灿发布了新的文献求助10
1分钟前
浮游应助名卡卡采纳,获得10
1分钟前
g143发布了新的文献求助10
1分钟前
笨笨的绿柏完成签到,获得积分10
1分钟前
马克完成签到,获得积分10
1分钟前
CipherSage应助Ribes采纳,获得30
1分钟前
g143完成签到,获得积分10
1分钟前
所所应助阿宁采纳,获得10
1分钟前
fokuf完成签到 ,获得积分10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301869
求助须知:如何正确求助?哪些是违规求助? 4449277
关于积分的说明 13848091
捐赠科研通 4335370
什么是DOI,文献DOI怎么找? 2380274
邀请新用户注册赠送积分活动 1375274
关于科研通互助平台的介绍 1341344