已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross-subject EEG emotion recognition using multi-source domain manifold feature selection

计算机科学 模式识别(心理学) 人工智能 学习迁移 分类器(UML) 条件概率分布 特征选择 歧管对齐 机器学习 非线性降维 数学 降维 统计
作者
Qingshan She,Xinsheng Shi,Feng Fang,Yuliang Ma,Yingchun Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:159: 106860-106860 被引量:10
标识
DOI:10.1016/j.compbiomed.2023.106860
摘要

Recent researches on emotion recognition suggests that domain adaptation, a form of transfer learning, has the capability to solve the cross-subject problem in Affective brain-computer interface (aBCI) field. However, traditional domain adaptation methods perform single to single domain transfer or simply merge different source domains into a larger domain to realize the transfer of knowledge, resulting in negative transfer. In this study, a multi-source transfer learning framework was proposed to promote the performance of multi-source electroencephalogram (EEG) emotion recognition. The method first used the data distribution similarity ranking (DDSA) method to select the appropriate source domain for each target domain off-line, and reduced data drift between domains through manifold feature mapping on Grassmann manifold. Meanwhile, the minimum redundancy maximum correlation algorithm (mRMR) was employed to select more representative manifold features and minimized the conditional distribution and marginal distribution of the manifold features, and then learned the domain-invariant classifier by summarizing structural risk minimization (SRM). Finally, the weighted fusion criterion was applied to further improve recognition performance. We compared our method with several state-of-the-art domain adaptation techniques using the SEED and DEAP dataset. Results showed that, compared with the conventional MEDA algorithm, the recognition accuracy of our proposed algorithm on SEED and DEAP dataset were improved by 6.74% and 5.34%, respectively. Besides, compared with TCA, JDA, and other state-of-the-art algorithms, the performance of our proposed method was also improved with the best average accuracy of 86.59% on SEED and 64.40% on DEAP. Our results demonstrated that the proposed multi-source transfer learning framework is more effective and feasible than other state-of-the-art methods in recognizing different emotions by solving the cross-subject problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉倒天瓢完成签到 ,获得积分10
4秒前
cherie关注了科研通微信公众号
7秒前
9秒前
榛苓完成签到,获得积分10
11秒前
榛苓发布了新的文献求助10
14秒前
情怀应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
wax应助科研通管家采纳,获得10
15秒前
Hayat应助科研通管家采纳,获得10
15秒前
16秒前
Nik- KC完成签到 ,获得积分10
20秒前
22秒前
28秒前
31秒前
加薪奥利奥完成签到 ,获得积分10
31秒前
35秒前
37秒前
cxx完成签到 ,获得积分10
37秒前
点一个随机昵称完成签到 ,获得积分10
39秒前
44秒前
Setlla完成签到 ,获得积分10
46秒前
Lucas应助多情的寻真采纳,获得10
46秒前
47秒前
LIU完成签到 ,获得积分10
50秒前
盛夏光年发布了新的文献求助10
51秒前
54秒前
54秒前
chuhong完成签到 ,获得积分10
1分钟前
王者归来完成签到,获得积分10
1分钟前
大渣饼完成签到 ,获得积分10
1分钟前
hahahan完成签到 ,获得积分10
1分钟前
SOBER完成签到 ,获得积分10
1分钟前
努力发一区完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
香蕉寒梅完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小王发布了新的文献求助30
1分钟前
wangsiyuan完成签到 ,获得积分10
1分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344077
求助须知:如何正确求助?哪些是违规求助? 2971136
关于积分的说明 8646583
捐赠科研通 2651377
什么是DOI,文献DOI怎么找? 1451703
科研通“疑难数据库(出版商)”最低求助积分说明 672250
邀请新用户注册赠送积分活动 661785