Cross-subject EEG emotion recognition using multi-source domain manifold feature selection

计算机科学 模式识别(心理学) 人工智能 学习迁移 分类器(UML) 条件概率分布 特征选择 歧管对齐 机器学习 非线性降维 数学 降维 统计
作者
Qingshan She,Xinsheng Shi,Feng Fang,Yuliang Ma,Yingchun Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:159: 106860-106860 被引量:36
标识
DOI:10.1016/j.compbiomed.2023.106860
摘要

Recent researches on emotion recognition suggests that domain adaptation, a form of transfer learning, has the capability to solve the cross-subject problem in Affective brain-computer interface (aBCI) field. However, traditional domain adaptation methods perform single to single domain transfer or simply merge different source domains into a larger domain to realize the transfer of knowledge, resulting in negative transfer. In this study, a multi-source transfer learning framework was proposed to promote the performance of multi-source electroencephalogram (EEG) emotion recognition. The method first used the data distribution similarity ranking (DDSA) method to select the appropriate source domain for each target domain off-line, and reduced data drift between domains through manifold feature mapping on Grassmann manifold. Meanwhile, the minimum redundancy maximum correlation algorithm (mRMR) was employed to select more representative manifold features and minimized the conditional distribution and marginal distribution of the manifold features, and then learned the domain-invariant classifier by summarizing structural risk minimization (SRM). Finally, the weighted fusion criterion was applied to further improve recognition performance. We compared our method with several state-of-the-art domain adaptation techniques using the SEED and DEAP dataset. Results showed that, compared with the conventional MEDA algorithm, the recognition accuracy of our proposed algorithm on SEED and DEAP dataset were improved by 6.74% and 5.34%, respectively. Besides, compared with TCA, JDA, and other state-of-the-art algorithms, the performance of our proposed method was also improved with the best average accuracy of 86.59% on SEED and 64.40% on DEAP. Our results demonstrated that the proposed multi-source transfer learning framework is more effective and feasible than other state-of-the-art methods in recognizing different emotions by solving the cross-subject problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大扑棱蛾子应助lxy采纳,获得10
1秒前
三十发布了新的文献求助30
2秒前
Silence完成签到 ,获得积分10
2秒前
能干的烧鹅完成签到,获得积分10
3秒前
3秒前
BetterH完成签到 ,获得积分10
4秒前
熊博士完成签到,获得积分10
4秒前
Lillie完成签到,获得积分10
4秒前
4秒前
铃铛完成签到,获得积分10
4秒前
Qi36完成签到 ,获得积分10
4秒前
xiaorang发布了新的文献求助10
5秒前
Andy完成签到,获得积分10
5秒前
慕青应助妙奇采纳,获得10
5秒前
6秒前
7秒前
7秒前
zychaos发布了新的文献求助20
7秒前
李HC完成签到,获得积分10
7秒前
ahua完成签到 ,获得积分10
8秒前
帅帅厅发布了新的文献求助30
8秒前
sun发布了新的文献求助10
8秒前
BrightForever完成签到,获得积分10
9秒前
英吉利25发布了新的文献求助10
9秒前
大模型应助yiwangwuqian采纳,获得10
9秒前
鱼大大完成签到,获得积分10
9秒前
别吃小米粥完成签到,获得积分10
10秒前
Tianling完成签到,获得积分0
10秒前
李HC发布了新的文献求助10
10秒前
hsss完成签到,获得积分10
10秒前
cheqi完成签到 ,获得积分10
11秒前
默11完成签到 ,获得积分10
11秒前
安静龙猫关注了科研通微信公众号
11秒前
SGLY完成签到,获得积分10
12秒前
zyc完成签到,获得积分10
12秒前
13秒前
NexusExplorer应助MaxinGo采纳,获得10
14秒前
liao应助英勇语蓉采纳,获得10
14秒前
14秒前
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
The Tangram Book: The Story of the Chinese Puzzle With over 2000 Puzzles to Solve 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450621
求助须知:如何正确求助?哪些是违规求助? 4558390
关于积分的说明 14266959
捐赠科研通 4481998
什么是DOI,文献DOI怎么找? 2455037
邀请新用户注册赠送积分活动 1445786
关于科研通互助平台的介绍 1421990