Cross-subject EEG emotion recognition using multi-source domain manifold feature selection

计算机科学 模式识别(心理学) 人工智能 学习迁移 分类器(UML) 条件概率分布 特征选择 歧管对齐 机器学习 非线性降维 数学 降维 统计
作者
Qingshan She,Xinsheng Shi,Feng Fang,Yuliang Ma,Yingchun Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:159: 106860-106860 被引量:36
标识
DOI:10.1016/j.compbiomed.2023.106860
摘要

Recent researches on emotion recognition suggests that domain adaptation, a form of transfer learning, has the capability to solve the cross-subject problem in Affective brain-computer interface (aBCI) field. However, traditional domain adaptation methods perform single to single domain transfer or simply merge different source domains into a larger domain to realize the transfer of knowledge, resulting in negative transfer. In this study, a multi-source transfer learning framework was proposed to promote the performance of multi-source electroencephalogram (EEG) emotion recognition. The method first used the data distribution similarity ranking (DDSA) method to select the appropriate source domain for each target domain off-line, and reduced data drift between domains through manifold feature mapping on Grassmann manifold. Meanwhile, the minimum redundancy maximum correlation algorithm (mRMR) was employed to select more representative manifold features and minimized the conditional distribution and marginal distribution of the manifold features, and then learned the domain-invariant classifier by summarizing structural risk minimization (SRM). Finally, the weighted fusion criterion was applied to further improve recognition performance. We compared our method with several state-of-the-art domain adaptation techniques using the SEED and DEAP dataset. Results showed that, compared with the conventional MEDA algorithm, the recognition accuracy of our proposed algorithm on SEED and DEAP dataset were improved by 6.74% and 5.34%, respectively. Besides, compared with TCA, JDA, and other state-of-the-art algorithms, the performance of our proposed method was also improved with the best average accuracy of 86.59% on SEED and 64.40% on DEAP. Our results demonstrated that the proposed multi-source transfer learning framework is more effective and feasible than other state-of-the-art methods in recognizing different emotions by solving the cross-subject problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳音完成签到,获得积分20
刚刚
刚刚
刚刚
刚刚
刚刚
学术智子完成签到,获得积分10
刚刚
共享精神应助cdytjt采纳,获得10
刚刚
1秒前
1秒前
Thi发布了新的文献求助10
1秒前
2秒前
VDC应助LUJU采纳,获得30
2秒前
游一发布了新的文献求助10
2秒前
舟夏完成签到 ,获得积分10
2秒前
billyin发布了新的文献求助10
3秒前
3秒前
了一李应助qs采纳,获得10
3秒前
共享精神应助何必在乎采纳,获得10
4秒前
顺利的夜梦完成签到,获得积分10
4秒前
想跟这个世界讲个道理完成签到,获得积分10
4秒前
zwyingg完成签到,获得积分10
4秒前
Mental发布了新的文献求助10
5秒前
tracy发布了新的文献求助10
5秒前
6秒前
领导范儿应助欢喜的毛豆采纳,获得10
6秒前
Luis发布了新的文献求助10
7秒前
太阳花发布了新的文献求助20
8秒前
renshiq发布了新的文献求助10
8秒前
悦耳的诗云完成签到,获得积分10
10秒前
CRUSADER发布了新的文献求助10
10秒前
吃不起橘子了完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
gouzi关注了科研通微信公众号
13秒前
13秒前
这波你的吗完成签到,获得积分20
13秒前
wkjfh应助自由思枫采纳,获得50
13秒前
左丘冬寒完成签到,获得积分10
13秒前
头秃科研人完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382