Cross-subject EEG emotion recognition using multi-source domain manifold feature selection

计算机科学 模式识别(心理学) 人工智能 学习迁移 分类器(UML) 条件概率分布 特征选择 歧管对齐 机器学习 非线性降维 数学 降维 统计
作者
Qingshan She,Xinsheng Shi,Feng Fang,Yuliang Ma,Yingchun Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:159: 106860-106860 被引量:36
标识
DOI:10.1016/j.compbiomed.2023.106860
摘要

Recent researches on emotion recognition suggests that domain adaptation, a form of transfer learning, has the capability to solve the cross-subject problem in Affective brain-computer interface (aBCI) field. However, traditional domain adaptation methods perform single to single domain transfer or simply merge different source domains into a larger domain to realize the transfer of knowledge, resulting in negative transfer. In this study, a multi-source transfer learning framework was proposed to promote the performance of multi-source electroencephalogram (EEG) emotion recognition. The method first used the data distribution similarity ranking (DDSA) method to select the appropriate source domain for each target domain off-line, and reduced data drift between domains through manifold feature mapping on Grassmann manifold. Meanwhile, the minimum redundancy maximum correlation algorithm (mRMR) was employed to select more representative manifold features and minimized the conditional distribution and marginal distribution of the manifold features, and then learned the domain-invariant classifier by summarizing structural risk minimization (SRM). Finally, the weighted fusion criterion was applied to further improve recognition performance. We compared our method with several state-of-the-art domain adaptation techniques using the SEED and DEAP dataset. Results showed that, compared with the conventional MEDA algorithm, the recognition accuracy of our proposed algorithm on SEED and DEAP dataset were improved by 6.74% and 5.34%, respectively. Besides, compared with TCA, JDA, and other state-of-the-art algorithms, the performance of our proposed method was also improved with the best average accuracy of 86.59% on SEED and 64.40% on DEAP. Our results demonstrated that the proposed multi-source transfer learning framework is more effective and feasible than other state-of-the-art methods in recognizing different emotions by solving the cross-subject problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
muni应助吴豁采纳,获得10
1秒前
科研通AI6应助俊逸的难破采纳,获得10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
CC完成签到,获得积分10
1秒前
poletar发布了新的文献求助10
2秒前
qaz发布了新的文献求助10
2秒前
Tomsen发布了新的文献求助10
2秒前
3秒前
好怀念WE完成签到,获得积分20
3秒前
3秒前
4秒前
科研通AI6应助学术悍匪采纳,获得10
5秒前
李健的小迷弟应助李萌采纳,获得10
5秒前
han发布了新的文献求助10
7秒前
7秒前
WU完成签到,获得积分10
8秒前
mqthhh发布了新的文献求助10
8秒前
多多关注了科研通微信公众号
9秒前
今后应助猪猪hero采纳,获得30
9秒前
sunshine完成签到,获得积分10
10秒前
10秒前
小蘑菇应助kyhappy_2002采纳,获得10
11秒前
CodeCraft应助keweic采纳,获得10
11秒前
黄学无发布了新的文献求助10
11秒前
11秒前
Youngcy应助lmg采纳,获得10
12秒前
12秒前
12秒前
13秒前
zwd发布了新的文献求助10
13秒前
今后应助zls采纳,获得10
14秒前
xiaoyinni应助张三采纳,获得10
14秒前
15秒前
无辜书南发布了新的文献求助10
15秒前
科研通AI2S应助小杰采纳,获得10
15秒前
sunyt发布了新的文献求助10
15秒前
酷波er应助qaz采纳,获得10
15秒前
富裕完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942644
求助须知:如何正确求助?哪些是违规求助? 4208241
关于积分的说明 13081377
捐赠科研通 3987311
什么是DOI,文献DOI怎么找? 2183028
邀请新用户注册赠送积分活动 1198648
关于科研通互助平台的介绍 1111020