材料科学
涡流
消散
磁性纳米粒子
凝聚态物理
纳米技术
纳米颗粒
物理
机械
热力学
作者
Lei Wang,Mengqiu Huang,Ke Pei,Wenbin You,Biao Zhao,Limin Wu,Chongyun Liang,Jincang Zhang,Renchao Che
出处
期刊:Advanced powder materials
[Elsevier]
日期:2023-01-19
卷期号:2 (3): 100111-100111
被引量:31
标识
DOI:10.1016/j.apmate.2023.100111
摘要
Magnetic domain structure plays an important role in regulating the electromagnetic properties, which dominates the magnetic response behaviors. Herein, unique magnetic vortex domain is firstly obtained in the Ni nanoparticles (NPs) reduced from the Ni-based metal-organic frameworks (MOFs) precursor. Due to both the high symmetry spheres and boundary restriction of graphited carbon shell, confined magnetic vortex structure is generated in the nanoscale Ni core during the annealing process. Meanwhile, MOFs-derived [email protected] assembly powders construct special magnetic flux distribution and electron migration routes. MOFs-derived [email protected] microspheres exhibit outstanding electromagnetic (EM) wave absorption performance. The minimum reflection loss value of [email protected]–V microspheres with vortex domain can reach −54.6 dB at only 2.5 mm thickness, and the efficient absorption bandwidth up to 5.0 GHz at only 2.0 mm. Significantly, configuration evolution of magnetic vortex driven by the orientation and reversion of polarity core boosts EM wave energy dissipation. Magnetic coupling effect among neighboring [email protected] microspheres significantly enhances the magnetic reaction intensity. Graphitized carbon matrix and heterojunction Ni–C interfaces further offer the conduction loss and interfacial polarization. As result, MOFs-derived [email protected]–V powders display unique magnetic vortex, electronic migration network, and high-performance EM wave energy dissipation.
科研通智能强力驱动
Strongly Powered by AbleSci AI