已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Confined magnetic vortex motion from metal-organic frameworks derived Ni@C microspheres boosts electromagnetic wave energy dissipation

材料科学 涡流 消散 磁性纳米粒子 凝聚态物理 纳米技术 纳米颗粒 物理 机械 热力学
作者
Lei Wang,Mengqiu Huang,Ke Pei,Wenbin You,Biao Zhao,Limin Wu,Chongyun Liang,Jincang Zhang,Renchao Che
出处
期刊:Advanced powder materials [Elsevier]
卷期号:2 (3): 100111-100111 被引量:31
标识
DOI:10.1016/j.apmate.2023.100111
摘要

Magnetic domain structure plays an important role in regulating the electromagnetic properties, which dominates the magnetic response behaviors. Herein, unique magnetic vortex domain is firstly obtained in the Ni nanoparticles (NPs) reduced from the Ni-based metal-organic frameworks (MOFs) precursor. Due to both the high symmetry spheres and boundary restriction of graphited carbon shell, confined magnetic vortex structure is generated in the nanoscale Ni core during the annealing process. Meanwhile, MOFs-derived [email protected] assembly powders construct special magnetic flux distribution and electron migration routes. MOFs-derived [email protected] microspheres exhibit outstanding electromagnetic (EM) wave absorption performance. The minimum reflection loss value of [email protected]–V microspheres with vortex domain can reach −54.6 ​dB at only 2.5 ​mm thickness, and the efficient absorption bandwidth up to 5.0 ​GHz at only 2.0 ​mm. Significantly, configuration evolution of magnetic vortex driven by the orientation and reversion of polarity core boosts EM wave energy dissipation. Magnetic coupling effect among neighboring [email protected] microspheres significantly enhances the magnetic reaction intensity. Graphitized carbon matrix and heterojunction Ni–C interfaces further offer the conduction loss and interfacial polarization. As result, MOFs-derived [email protected]–V powders display unique magnetic vortex, electronic migration network, and high-performance EM wave energy dissipation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恒星的恒心完成签到 ,获得积分10
刚刚
John完成签到 ,获得积分10
1秒前
2秒前
浦肯野应助蜀黍采纳,获得40
3秒前
wujinwen完成签到,获得积分10
4秒前
4秒前
mumu完成签到,获得积分10
5秒前
6秒前
7秒前
慕青应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
夕诙应助科研通管家采纳,获得10
8秒前
北极熊发布了新的文献求助10
10秒前
10秒前
jinjun完成签到,获得积分10
10秒前
危机的尔蝶完成签到,获得积分10
11秒前
12秒前
甜甜的安彤完成签到,获得积分10
12秒前
Owen应助Tumumu采纳,获得10
14秒前
15秒前
君君完成签到,获得积分10
15秒前
小豪发布了新的文献求助10
17秒前
kevin1018发布了新的文献求助10
17秒前
18秒前
19秒前
可爱的函函应助cy采纳,获得10
20秒前
hongw_liu完成签到,获得积分10
21秒前
传奇3应助肖圣凯采纳,获得10
24秒前
25秒前
27秒前
蹦擦擦发布了新的文献求助10
28秒前
29秒前
30秒前
31秒前
BSDL发布了新的文献求助10
34秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471262
求助须知:如何正确求助?哪些是违规求助? 3064158
关于积分的说明 9087696
捐赠科研通 2754957
什么是DOI,文献DOI怎么找? 1511673
邀请新用户注册赠送积分活动 698560
科研通“疑难数据库(出版商)”最低求助积分说明 698423