亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sequential Classification of Aviation Safety Occurrences with Natural Language Processing

计算机科学 航空 航空安全 叙述的 根本原因 召回 自然语言处理 人工智能 过程(计算) 深度学习 自然语言 航空事故 精确性和召回率 工程类 可靠性工程 语言学 航空航天工程 哲学 操作系统
作者
Aziida Nanyonga,Hassan Wasswa,Uğur Turhan,Оleksandra Molloy,Graham Wild
出处
期刊:AIAA Aviation 2019 Forum 被引量:7
标识
DOI:10.2514/6.2023-4325
摘要

View Video Presentation: https://doi.org/10.2514/6.2023-4325.vid Safety is a critical aspect of the air transport system given even slight operational anomalies can result in serious consequences. To reduce the chances of aviation safety occurrences, accidents and incidents are reported to establish the root cause, and propose safety recommendations etc. However, analysis narratives of the pre-accident events are presented using human understandable, raw, unstructured, text that cannot be understood by a computer system. The ability to classify and categories safety occurrences from their textual narratives would help aviation industry stakeholders make informed safety critical decisions. To classify and categories safety occurrences, we applied natural language processing (NLP) and AI (Artificial Intelligence) models to process text narratives. The aim of the study was to answer the question, "how well can the damage level caused to the aircraft in a safety occurrence be inferred from the text narrative using natural language processing?" The classification performance of various deep learning models including LSTM, BLSTM, GRU, sRNN, and combinations of these models including LSTM+GRU, BLSTM+GRU, sRNN+LSTM, sRNN+BLSTM, sRNN+GRU, sRNN+BLSTM+GRU, and sRNN+LSTM+GRU was evaluated on a set of 27,000 safety occurrence reports from the NTSB. The results of this study indicate that all models investigated performed competitively well recording an accuracy of over 87.9% which is well above the random guess of 25% for a four-class classification problem. Also, the models recorded high performance in terms of precision, recall, and F1 score above 80%, 88%, and 85%, respectively. sRNN slightly outperformed other single models in terms of recall (90%) and accuracy (90%) while LSTM reported slightly better performance in terms of precision (87%). Further, GRU+LSTM and sRNN+BLSTM+GRU recorded the best performance in terms of recall (90%), and accuracy (90%) for joint models. These results suggest that the damage level can be inferred from the raw text narratives using NLP and deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rn完成签到 ,获得积分10
1分钟前
顾矜应助罗咩咩采纳,获得10
1分钟前
罗咩咩完成签到,获得积分10
1分钟前
1分钟前
非泥完成签到,获得积分10
1分钟前
罗咩咩发布了新的文献求助10
1分钟前
888完成签到 ,获得积分10
1分钟前
wang完成签到,获得积分10
1分钟前
无花果应助wang采纳,获得30
2分钟前
tracey发布了新的文献求助10
2分钟前
Dritsw应助儒雅老太采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
hhhhhhhhhh完成签到 ,获得积分10
2分钟前
qiu发布了新的文献求助10
2分钟前
小吴同志发布了新的文献求助10
3分钟前
liars完成签到 ,获得积分10
3分钟前
小吴同志完成签到,获得积分10
3分钟前
研友_Lw4Ngn完成签到,获得积分10
3分钟前
3分钟前
李西瓜完成签到 ,获得积分10
3分钟前
HeLL0完成签到 ,获得积分10
4分钟前
科研通AI2S应助Zjc0913采纳,获得10
4分钟前
李健应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
DChen完成签到 ,获得积分10
4分钟前
张伯猪完成签到,获得积分10
4分钟前
NinG发布了新的文献求助10
4分钟前
寒冷苗条应助NinG采纳,获得10
5分钟前
科目三应助Apricot采纳,获得10
5分钟前
5分钟前
Apricot发布了新的文献求助10
5分钟前
Apricot完成签到,获得积分10
5分钟前
寒冷苗条应助NinG采纳,获得10
6分钟前
Zjc0913发布了新的文献求助10
6分钟前
6分钟前
6分钟前
赘婿应助爱听歌书芹采纳,获得10
6分钟前
天天快乐应助爱听歌书芹采纳,获得10
6分钟前
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155650
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214