亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sequential Classification of Aviation Safety Occurrences with Natural Language Processing

计算机科学 航空 航空安全 叙述的 根本原因 召回 自然语言处理 人工智能 过程(计算) 深度学习 自然语言 航空事故 精确性和召回率 工程类 可靠性工程 语言学 航空航天工程 哲学 操作系统
作者
Aziida Nanyonga,Hassan Wasswa,Uğur Turhan,Оleksandra Molloy,Graham Wild
出处
期刊:AIAA Aviation 2019 Forum 被引量:7
标识
DOI:10.2514/6.2023-4325
摘要

View Video Presentation: https://doi.org/10.2514/6.2023-4325.vid Safety is a critical aspect of the air transport system given even slight operational anomalies can result in serious consequences. To reduce the chances of aviation safety occurrences, accidents and incidents are reported to establish the root cause, and propose safety recommendations etc. However, analysis narratives of the pre-accident events are presented using human understandable, raw, unstructured, text that cannot be understood by a computer system. The ability to classify and categories safety occurrences from their textual narratives would help aviation industry stakeholders make informed safety critical decisions. To classify and categories safety occurrences, we applied natural language processing (NLP) and AI (Artificial Intelligence) models to process text narratives. The aim of the study was to answer the question, "how well can the damage level caused to the aircraft in a safety occurrence be inferred from the text narrative using natural language processing?" The classification performance of various deep learning models including LSTM, BLSTM, GRU, sRNN, and combinations of these models including LSTM+GRU, BLSTM+GRU, sRNN+LSTM, sRNN+BLSTM, sRNN+GRU, sRNN+BLSTM+GRU, and sRNN+LSTM+GRU was evaluated on a set of 27,000 safety occurrence reports from the NTSB. The results of this study indicate that all models investigated performed competitively well recording an accuracy of over 87.9% which is well above the random guess of 25% for a four-class classification problem. Also, the models recorded high performance in terms of precision, recall, and F1 score above 80%, 88%, and 85%, respectively. sRNN slightly outperformed other single models in terms of recall (90%) and accuracy (90%) while LSTM reported slightly better performance in terms of precision (87%). Further, GRU+LSTM and sRNN+BLSTM+GRU recorded the best performance in terms of recall (90%), and accuracy (90%) for joint models. These results suggest that the damage level can be inferred from the raw text narratives using NLP and deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
zho发布了新的文献求助10
4秒前
5秒前
南山荣熙发布了新的文献求助10
8秒前
Pikachu发布了新的文献求助10
9秒前
顺心剑身完成签到 ,获得积分10
12秒前
南山荣熙完成签到,获得积分10
17秒前
28秒前
38秒前
41秒前
mihumihu发布了新的文献求助10
42秒前
进步发布了新的文献求助10
45秒前
kk发布了新的文献求助10
46秒前
zho发布了新的文献求助10
52秒前
Akim应助mihumihu采纳,获得10
52秒前
进步完成签到,获得积分10
53秒前
1分钟前
往复发布了新的文献求助10
1分钟前
Wang完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
搜集达人应助往复采纳,获得10
1分钟前
1分钟前
无花果应助饼干小子采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
zho发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
junkook完成签到 ,获得积分10
3分钟前
信封完成签到 ,获得积分10
3分钟前
3分钟前
zho发布了新的文献求助10
3分钟前
从容映易完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Oracle完成签到 ,获得积分10
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388430
求助须知:如何正确求助?哪些是违规求助? 3000764
关于积分的说明 8793621
捐赠科研通 2686885
什么是DOI,文献DOI怎么找? 1471916
科研通“疑难数据库(出版商)”最低求助积分说明 680665
邀请新用户注册赠送积分活动 673313