Sequential Classification of Aviation Safety Occurrences with Natural Language Processing

计算机科学 航空 航空安全 叙述的 根本原因 召回 自然语言处理 人工智能 过程(计算) 深度学习 自然语言 航空事故 精确性和召回率 工程类 可靠性工程 语言学 航空航天工程 哲学 操作系统
作者
Aziida Nanyonga,Hassan Wasswa,Uğur Turhan,Оleksandra Molloy,Graham Wild
出处
期刊:AIAA Aviation 2019 Forum 被引量:7
标识
DOI:10.2514/6.2023-4325
摘要

View Video Presentation: https://doi.org/10.2514/6.2023-4325.vid Safety is a critical aspect of the air transport system given even slight operational anomalies can result in serious consequences. To reduce the chances of aviation safety occurrences, accidents and incidents are reported to establish the root cause, and propose safety recommendations etc. However, analysis narratives of the pre-accident events are presented using human understandable, raw, unstructured, text that cannot be understood by a computer system. The ability to classify and categories safety occurrences from their textual narratives would help aviation industry stakeholders make informed safety critical decisions. To classify and categories safety occurrences, we applied natural language processing (NLP) and AI (Artificial Intelligence) models to process text narratives. The aim of the study was to answer the question, "how well can the damage level caused to the aircraft in a safety occurrence be inferred from the text narrative using natural language processing?" The classification performance of various deep learning models including LSTM, BLSTM, GRU, sRNN, and combinations of these models including LSTM+GRU, BLSTM+GRU, sRNN+LSTM, sRNN+BLSTM, sRNN+GRU, sRNN+BLSTM+GRU, and sRNN+LSTM+GRU was evaluated on a set of 27,000 safety occurrence reports from the NTSB. The results of this study indicate that all models investigated performed competitively well recording an accuracy of over 87.9% which is well above the random guess of 25% for a four-class classification problem. Also, the models recorded high performance in terms of precision, recall, and F1 score above 80%, 88%, and 85%, respectively. sRNN slightly outperformed other single models in terms of recall (90%) and accuracy (90%) while LSTM reported slightly better performance in terms of precision (87%). Further, GRU+LSTM and sRNN+BLSTM+GRU recorded the best performance in terms of recall (90%), and accuracy (90%) for joint models. These results suggest that the damage level can be inferred from the raw text narratives using NLP and deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助郭嘉仪采纳,获得10
1秒前
科研通AI2S应助龙行天下采纳,获得10
3秒前
ce关注了科研通微信公众号
3秒前
4秒前
5秒前
辰辰完成签到 ,获得积分10
8秒前
8秒前
dandna完成签到 ,获得积分10
9秒前
赵海锋发布了新的文献求助10
9秒前
10秒前
10秒前
TTTTT发布了新的文献求助10
10秒前
11秒前
脑洞疼应助婷婷采纳,获得10
14秒前
哦豁拐咯完成签到,获得积分10
15秒前
15秒前
小智0921完成签到,获得积分10
15秒前
anan应助xiaohu采纳,获得20
16秒前
16秒前
老纪1999完成签到,获得积分10
16秒前
XIA发布了新的文献求助10
16秒前
彤彤发布了新的文献求助10
17秒前
静1997完成签到,获得积分20
17秒前
小马甲应助贪玩的寄松采纳,获得10
18秒前
核桃酥发布了新的文献求助10
19秒前
19秒前
静1997发布了新的文献求助10
21秒前
春风十里完成签到,获得积分10
21秒前
科目三应助scifff采纳,获得10
23秒前
23秒前
ce发布了新的文献求助10
24秒前
XIA完成签到,获得积分10
24秒前
27秒前
fred完成签到,获得积分20
27秒前
共享精神应助期颐七采纳,获得10
27秒前
科研通AI6应助2_3_10采纳,获得10
29秒前
灿烂千阳完成签到,获得积分10
29秒前
31秒前
aliderichang完成签到 ,获得积分10
31秒前
fred发布了新的文献求助30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818