亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sequential Classification of Aviation Safety Occurrences with Natural Language Processing

计算机科学 航空 航空安全 叙述的 根本原因 召回 自然语言处理 人工智能 过程(计算) 深度学习 自然语言 航空事故 精确性和召回率 工程类 可靠性工程 语言学 航空航天工程 哲学 操作系统
作者
Aziida Nanyonga,Hassan Wasswa,Uğur Turhan,Оleksandra Molloy,Graham Wild
出处
期刊:AIAA Aviation 2019 Forum 被引量:15
标识
DOI:10.2514/6.2023-4325
摘要

Safety is a critical aspect of the air transport system given even slight operational anomalies can result in serious consequences. To reduce the chances of aviation safety occurrences, accidents and incidents are reported to establish the root cause, propose safety recommendations etc. However, analysis narratives of the pre-accident events are presented using human-understandable, raw, unstructured, text that a computer system cannot understand. The ability to classify and categorise safety occurrences from their textual narratives would help aviation industry stakeholders make informed safety-critical decisions. To classify and categorise safety occurrences, we applied natural language processing (NLP) and AI (Artificial Intelligence) models to process text narratives. The study aimed to answer the question. How well can the damage level caused to the aircraft in a safety occurrence be inferred from the text narrative using natural language processing. The classification performance of various deep learning models including LSTM, BLSTM, GRU, sRNN, and combinations of these models including LSTM and GRU, BLSTM+GRU, sRNN and LSTM, sRNN and BLSTM, sRNN and GRU, sRNN and BLSTM and GRU, and sRNN and LSTM and GRU was evaluated on a set of 27,000 safety occurrence reports from the NTSB. The results of this study indicate that all models investigated performed competitively well recording an accuracy of over 87.9% which is well above the random guess of 25% for a four-class classification problem. Also, the models recorded high precision, recall, and F1 scores above 80%, 88%, and 85%, respectively. sRNN slightly outperformed other single models in terms of recall (90%) and accuracy (90%) while LSTM reported slightly better performance in terms of precision (87%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
shentaii完成签到,获得积分10
12秒前
辛酸老八发布了新的文献求助10
12秒前
嘁嘁完成签到 ,获得积分10
13秒前
Soey完成签到,获得积分10
13秒前
巫马白桃发布了新的文献求助10
14秒前
斯文的凝珍完成签到,获得积分10
17秒前
善学以致用应助试验顺利采纳,获得10
23秒前
李爱国应助巫马白桃采纳,获得10
26秒前
毛耳朵发布了新的文献求助10
26秒前
丰富的饼干完成签到,获得积分10
30秒前
31秒前
Hu发布了新的文献求助30
36秒前
科研通AI6.1应助毛耳朵采纳,获得10
37秒前
44秒前
GingerF应助辛酸老八采纳,获得200
53秒前
文鞅发布了新的文献求助10
58秒前
1分钟前
1分钟前
虚幻雁荷发布了新的文献求助10
1分钟前
巫马白桃发布了新的文献求助10
1分钟前
巫马白桃完成签到,获得积分10
1分钟前
万能图书馆应助虚幻雁荷采纳,获得10
1分钟前
1分钟前
脑洞疼应助面包战士采纳,获得10
1分钟前
尘默发布了新的文献求助10
1分钟前
HHHHH完成签到,获得积分10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6.2应助gech采纳,获得10
1分钟前
Frank发布了新的文献求助10
1分钟前
Hu完成签到,获得积分20
1分钟前
午盏完成签到 ,获得积分10
1分钟前
2分钟前
香蕉觅云应助Frank采纳,获得10
2分钟前
bkagyin应助Frank采纳,获得10
2分钟前
李健的小迷弟应助Frank采纳,获得10
2分钟前
传奇3应助Frank采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875549
求助须知:如何正确求助?哪些是违规求助? 6518322
关于积分的说明 15677256
捐赠科研通 4993517
什么是DOI,文献DOI怎么找? 2691534
邀请新用户注册赠送积分活动 1633787
关于科研通互助平台的介绍 1591442