A theoretical and deep learning hybrid model for predicting surface roughness of diamond-turned polycrystalline materials

方向错误 材料科学 表面粗糙度 表面光洁度 微晶 聚晶金刚石 钻石 粒度 复合材料 晶界 冶金 微观结构
作者
Chunlei He,Jiwang Yan,Shuqi Wang,Shuo Zhang,Guang Chen,Chengzu Ren
出处
期刊:International journal of extreme manufacturing [IOP Publishing]
卷期号:5 (3): 035102-035102 被引量:16
标识
DOI:10.1088/2631-7990/acdb0a
摘要

Abstract Polycrystalline materials are extensively employed in industry. Its surface roughness significantly affects the working performance. Material defects, particularly grain boundaries, have a great impact on the achieved surface roughness of polycrystalline materials. However, it is difficult to establish a purely theoretical model for surface roughness with consideration of the grain boundary effect using conventional analytical methods. In this work, a theoretical and deep learning hybrid model for predicting the surface roughness of diamond-turned polycrystalline materials is proposed. The kinematic–dynamic roughness component in relation to the tool profile duplication effect, work material plastic side flow, relative vibration between the diamond tool and workpiece, etc, is theoretically calculated. The material-defect roughness component is modeled with a cascade forward neural network. In the neural network, the ratio of maximum undeformed chip thickness to cutting edge radius R TS , work material properties (misorientation angle θ g and grain size d g ), and spindle rotation speed n s are configured as input variables. The material-defect roughness component is set as the output variable. To validate the developed model, polycrystalline copper with a gradient distribution of grains prepared by friction stir processing is machined with various processing parameters and different diamond tools. Compared with the previously developed model, obvious improvement in the prediction accuracy is observed with this hybrid prediction model. Based on this model, the influences of different factors on the surface roughness of polycrystalline materials are discussed. The influencing mechanism of the misorientation angle and grain size is quantitatively analyzed. Two fracture modes, including transcrystalline and intercrystalline fractures at different R TS values, are observed. Meanwhile, optimal processing parameters are obtained with a simulated annealing algorithm. Cutting experiments are performed with the optimal parameters, and a flat surface finish with Sa 1.314 nm is finally achieved. The developed model and corresponding new findings in this work are beneficial for accurately predicting the surface roughness of polycrystalline materials and understanding the impacting mechanism of material defects in diamond turning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mikebai发布了新的文献求助10
刚刚
1秒前
闪闪的盼芙关注了科研通微信公众号
2秒前
2秒前
Maga发布了新的文献求助10
2秒前
周州完成签到,获得积分10
3秒前
3秒前
CodeCraft应助魁梧的小霸王采纳,获得10
3秒前
baihehuakai发布了新的文献求助10
3秒前
4秒前
4秒前
青春完成签到,获得积分20
4秒前
Jehuw发布了新的文献求助10
4秒前
科研通AI2S应助赖林采纳,获得10
5秒前
5秒前
滕遥发布了新的文献求助10
6秒前
哈莉完成签到,获得积分10
6秒前
zy3637发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
Orange应助独特一刀采纳,获得10
8秒前
呵呵哒完成签到,获得积分10
8秒前
9秒前
nnnnn完成签到,获得积分10
9秒前
9秒前
10秒前
Singularity应助苏木采纳,获得10
10秒前
wsh发布了新的文献求助10
11秒前
11秒前
神奇海螺完成签到,获得积分10
11秒前
12秒前
领导范儿应助Maga采纳,获得10
12秒前
挺好的发货完成签到,获得积分10
13秒前
Orange应助kirirto采纳,获得10
13秒前
华仔应助zy3637采纳,获得20
13秒前
14秒前
nancy wang发布了新的文献求助10
14秒前
科研小白完成签到,获得积分10
14秒前
14秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Experimental investigation of the mechanics of explosive welding by means of a liquid analogue 1060
Die Elektra-Partitur von Richard Strauss : ein Lehrbuch für die Technik der dramatischen Komposition 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 600
大平正芳: 「戦後保守」とは何か 550
Sustainability in ’Tides Chemistry 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3006946
求助须知:如何正确求助?哪些是违规求助? 2666293
关于积分的说明 7230222
捐赠科研通 2303372
什么是DOI,文献DOI怎么找? 1221386
科研通“疑难数据库(出版商)”最低求助积分说明 595204
版权声明 593358