亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A theoretical and deep learning hybrid model for predicting surface roughness of diamond-turned polycrystalline materials

方向错误 材料科学 表面粗糙度 表面光洁度 微晶 聚晶金刚石 钻石 粒度 复合材料 晶界 冶金 微观结构
作者
Chunlei He,Jiwang Yan,Shuqi Wang,Shuo Zhang,Guang Chen,Chengzu Ren
出处
期刊:International journal of extreme manufacturing [IOP Publishing]
卷期号:5 (3): 035102-035102 被引量:23
标识
DOI:10.1088/2631-7990/acdb0a
摘要

Abstract Polycrystalline materials are extensively employed in industry. Its surface roughness significantly affects the working performance. Material defects, particularly grain boundaries, have a great impact on the achieved surface roughness of polycrystalline materials. However, it is difficult to establish a purely theoretical model for surface roughness with consideration of the grain boundary effect using conventional analytical methods. In this work, a theoretical and deep learning hybrid model for predicting the surface roughness of diamond-turned polycrystalline materials is proposed. The kinematic–dynamic roughness component in relation to the tool profile duplication effect, work material plastic side flow, relative vibration between the diamond tool and workpiece, etc, is theoretically calculated. The material-defect roughness component is modeled with a cascade forward neural network. In the neural network, the ratio of maximum undeformed chip thickness to cutting edge radius R TS , work material properties (misorientation angle θ g and grain size d g ), and spindle rotation speed n s are configured as input variables. The material-defect roughness component is set as the output variable. To validate the developed model, polycrystalline copper with a gradient distribution of grains prepared by friction stir processing is machined with various processing parameters and different diamond tools. Compared with the previously developed model, obvious improvement in the prediction accuracy is observed with this hybrid prediction model. Based on this model, the influences of different factors on the surface roughness of polycrystalline materials are discussed. The influencing mechanism of the misorientation angle and grain size is quantitatively analyzed. Two fracture modes, including transcrystalline and intercrystalline fractures at different R TS values, are observed. Meanwhile, optimal processing parameters are obtained with a simulated annealing algorithm. Cutting experiments are performed with the optimal parameters, and a flat surface finish with Sa 1.314 nm is finally achieved. The developed model and corresponding new findings in this work are beneficial for accurately predicting the surface roughness of polycrystalline materials and understanding the impacting mechanism of material defects in diamond turning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
41秒前
铁瓜李完成签到 ,获得积分10
44秒前
47秒前
zoelir发布了新的文献求助10
52秒前
zoelir完成签到,获得积分10
1分钟前
lingting完成签到,获得积分10
1分钟前
英姑应助zhjl采纳,获得10
1分钟前
1分钟前
lingting发布了新的文献求助10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
2分钟前
矜持完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Pattis完成签到 ,获得积分10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
国色不染尘完成签到,获得积分10
2分钟前
3分钟前
结实的半双完成签到,获得积分10
3分钟前
3分钟前
芙瑞完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Azlne完成签到,获得积分10
4分钟前
4分钟前
zhjl发布了新的文献求助10
4分钟前
4分钟前
滕皓轩完成签到 ,获得积分20
5分钟前
6分钟前
清脆语海发布了新的文献求助10
6分钟前
李爱国应助清脆语海采纳,获得10
6分钟前
6分钟前
6分钟前
MiaMia应助科研通管家采纳,获得30
6分钟前
科研通AI6应助科研通管家采纳,获得30
6分钟前
6分钟前
香蕉觅云应助zl采纳,获得10
6分钟前
zym完成签到 ,获得积分10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639739
求助须知:如何正确求助?哪些是违规求助? 4750173
关于积分的说明 15007280
捐赠科研通 4797915
什么是DOI,文献DOI怎么找? 2564024
邀请新用户注册赠送积分活动 1522896
关于科研通互助平台的介绍 1482574