A theoretical and deep learning hybrid model for predicting surface roughness of diamond-turned polycrystalline materials

方向错误 材料科学 表面粗糙度 表面光洁度 微晶 聚晶金刚石 钻石 粒度 复合材料 晶界 冶金 微观结构
作者
Chunlei He,Jiwang Yan,Shuqi Wang,Shuo Zhang,Guang Chen,Chengzu Ren
出处
期刊:International journal of extreme manufacturing [IOP Publishing]
卷期号:5 (3): 035102-035102 被引量:23
标识
DOI:10.1088/2631-7990/acdb0a
摘要

Abstract Polycrystalline materials are extensively employed in industry. Its surface roughness significantly affects the working performance. Material defects, particularly grain boundaries, have a great impact on the achieved surface roughness of polycrystalline materials. However, it is difficult to establish a purely theoretical model for surface roughness with consideration of the grain boundary effect using conventional analytical methods. In this work, a theoretical and deep learning hybrid model for predicting the surface roughness of diamond-turned polycrystalline materials is proposed. The kinematic–dynamic roughness component in relation to the tool profile duplication effect, work material plastic side flow, relative vibration between the diamond tool and workpiece, etc, is theoretically calculated. The material-defect roughness component is modeled with a cascade forward neural network. In the neural network, the ratio of maximum undeformed chip thickness to cutting edge radius R TS , work material properties (misorientation angle θ g and grain size d g ), and spindle rotation speed n s are configured as input variables. The material-defect roughness component is set as the output variable. To validate the developed model, polycrystalline copper with a gradient distribution of grains prepared by friction stir processing is machined with various processing parameters and different diamond tools. Compared with the previously developed model, obvious improvement in the prediction accuracy is observed with this hybrid prediction model. Based on this model, the influences of different factors on the surface roughness of polycrystalline materials are discussed. The influencing mechanism of the misorientation angle and grain size is quantitatively analyzed. Two fracture modes, including transcrystalline and intercrystalline fractures at different R TS values, are observed. Meanwhile, optimal processing parameters are obtained with a simulated annealing algorithm. Cutting experiments are performed with the optimal parameters, and a flat surface finish with Sa 1.314 nm is finally achieved. The developed model and corresponding new findings in this work are beneficial for accurately predicting the surface roughness of polycrystalline materials and understanding the impacting mechanism of material defects in diamond turning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观跳跳糖完成签到,获得积分10
刚刚
刚刚
WxChen发布了新的文献求助10
1秒前
1秒前
酷炫的香魔完成签到,获得积分10
1秒前
1秒前
1秒前
NexusExplorer应助无奈满天采纳,获得10
1秒前
qwt_hello完成签到,获得积分10
1秒前
1秒前
海涛完成签到,获得积分10
2秒前
星星发布了新的文献求助10
3秒前
qq完成签到,获得积分10
3秒前
3秒前
3秒前
中央戏精学院完成签到,获得积分10
3秒前
寒冷依秋完成签到,获得积分10
3秒前
彭于晏应助jogrgr采纳,获得10
3秒前
思源应助momo采纳,获得10
4秒前
guozi应助yi采纳,获得10
4秒前
科研通AI2S应助鲤鱼凛采纳,获得10
4秒前
4秒前
kumarr发布了新的文献求助10
4秒前
4秒前
时尚语梦发布了新的文献求助10
4秒前
苹果酸奶完成签到,获得积分10
5秒前
标致小伙发布了新的文献求助10
6秒前
6秒前
6秒前
科研民工发布了新的文献求助10
6秒前
Owen应助sun采纳,获得10
6秒前
handsomecat发布了新的文献求助10
6秒前
乐乐关注了科研通微信公众号
6秒前
6秒前
Kriemhild完成签到,获得积分10
7秒前
dz完成签到,获得积分10
7秒前
小可发布了新的文献求助10
7秒前
夜雨声烦完成签到,获得积分10
7秒前
MrCoolWu发布了新的文献求助10
7秒前
过时的不评完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759