A theoretical and deep learning hybrid model for predicting surface roughness of diamond-turned polycrystalline materials

方向错误 材料科学 表面粗糙度 表面光洁度 微晶 聚晶金刚石 钻石 粒度 复合材料 晶界 冶金 微观结构
作者
Chunlei He,Jiwang Yan,Shuqi Wang,Shuo Zhang,Guang Chen,Chengzu Ren
出处
期刊:International journal of extreme manufacturing [IOP Publishing]
卷期号:5 (3): 035102-035102 被引量:16
标识
DOI:10.1088/2631-7990/acdb0a
摘要

Abstract Polycrystalline materials are extensively employed in industry. Its surface roughness significantly affects the working performance. Material defects, particularly grain boundaries, have a great impact on the achieved surface roughness of polycrystalline materials. However, it is difficult to establish a purely theoretical model for surface roughness with consideration of the grain boundary effect using conventional analytical methods. In this work, a theoretical and deep learning hybrid model for predicting the surface roughness of diamond-turned polycrystalline materials is proposed. The kinematic–dynamic roughness component in relation to the tool profile duplication effect, work material plastic side flow, relative vibration between the diamond tool and workpiece, etc, is theoretically calculated. The material-defect roughness component is modeled with a cascade forward neural network. In the neural network, the ratio of maximum undeformed chip thickness to cutting edge radius R TS , work material properties (misorientation angle θ g and grain size d g ), and spindle rotation speed n s are configured as input variables. The material-defect roughness component is set as the output variable. To validate the developed model, polycrystalline copper with a gradient distribution of grains prepared by friction stir processing is machined with various processing parameters and different diamond tools. Compared with the previously developed model, obvious improvement in the prediction accuracy is observed with this hybrid prediction model. Based on this model, the influences of different factors on the surface roughness of polycrystalline materials are discussed. The influencing mechanism of the misorientation angle and grain size is quantitatively analyzed. Two fracture modes, including transcrystalline and intercrystalline fractures at different R TS values, are observed. Meanwhile, optimal processing parameters are obtained with a simulated annealing algorithm. Cutting experiments are performed with the optimal parameters, and a flat surface finish with Sa 1.314 nm is finally achieved. The developed model and corresponding new findings in this work are beneficial for accurately predicting the surface roughness of polycrystalline materials and understanding the impacting mechanism of material defects in diamond turning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
培a发布了新的文献求助10
1秒前
2秒前
深情安青应助一一采纳,获得10
2秒前
selena完成签到 ,获得积分10
3秒前
科研通AI2S应助迪迪采纳,获得10
3秒前
今后应助迪迪采纳,获得10
3秒前
4秒前
Amon完成签到,获得积分10
4秒前
5秒前
汎影发布了新的文献求助10
7秒前
asd发布了新的文献求助10
7秒前
太阳发布了新的文献求助20
9秒前
selena关注了科研通微信公众号
9秒前
23完成签到,获得积分10
9秒前
10秒前
HUMBLE发布了新的文献求助10
10秒前
Owen应助能干的邹采纳,获得10
11秒前
12秒前
机智橘子完成签到,获得积分10
12秒前
李健的小迷弟应助草木采纳,获得10
14秒前
CipherSage应助草木采纳,获得10
14秒前
wumin发布了新的文献求助10
14秒前
14秒前
Singularity应助袁大头采纳,获得40
17秒前
17秒前
一一发布了新的文献求助10
18秒前
18秒前
HUMBLE完成签到,获得积分10
19秒前
脑洞疼应助zyfqpc采纳,获得200
19秒前
gg发布了新的文献求助10
20秒前
00爱学习完成签到 ,获得积分10
21秒前
听风完成签到 ,获得积分10
21秒前
赫如冰发布了新的文献求助10
21秒前
小小富发布了新的文献求助10
22秒前
Akim应助无辜的皮皮虾采纳,获得10
23秒前
Hello应助24采纳,获得10
23秒前
whx完成签到 ,获得积分10
24秒前
不配.应助wyl采纳,获得20
25秒前
小二郎应助赫如冰采纳,获得10
25秒前
26秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788907
关于积分的说明 7789001
捐赠科研通 2445272
什么是DOI,文献DOI怎么找? 1300255
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046