亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A theoretical and deep learning hybrid model for predicting surface roughness of diamond-turned polycrystalline materials

方向错误 材料科学 表面粗糙度 表面光洁度 微晶 聚晶金刚石 钻石 粒度 复合材料 晶界 冶金 微观结构
作者
Chunlei He,Jiwang Yan,Shuqi Wang,Shuo Zhang,Guang Chen,Chengzu Ren
出处
期刊:International journal of extreme manufacturing [IOP Publishing]
卷期号:5 (3): 035102-035102 被引量:23
标识
DOI:10.1088/2631-7990/acdb0a
摘要

Abstract Polycrystalline materials are extensively employed in industry. Its surface roughness significantly affects the working performance. Material defects, particularly grain boundaries, have a great impact on the achieved surface roughness of polycrystalline materials. However, it is difficult to establish a purely theoretical model for surface roughness with consideration of the grain boundary effect using conventional analytical methods. In this work, a theoretical and deep learning hybrid model for predicting the surface roughness of diamond-turned polycrystalline materials is proposed. The kinematic–dynamic roughness component in relation to the tool profile duplication effect, work material plastic side flow, relative vibration between the diamond tool and workpiece, etc, is theoretically calculated. The material-defect roughness component is modeled with a cascade forward neural network. In the neural network, the ratio of maximum undeformed chip thickness to cutting edge radius R TS , work material properties (misorientation angle θ g and grain size d g ), and spindle rotation speed n s are configured as input variables. The material-defect roughness component is set as the output variable. To validate the developed model, polycrystalline copper with a gradient distribution of grains prepared by friction stir processing is machined with various processing parameters and different diamond tools. Compared with the previously developed model, obvious improvement in the prediction accuracy is observed with this hybrid prediction model. Based on this model, the influences of different factors on the surface roughness of polycrystalline materials are discussed. The influencing mechanism of the misorientation angle and grain size is quantitatively analyzed. Two fracture modes, including transcrystalline and intercrystalline fractures at different R TS values, are observed. Meanwhile, optimal processing parameters are obtained with a simulated annealing algorithm. Cutting experiments are performed with the optimal parameters, and a flat surface finish with Sa 1.314 nm is finally achieved. The developed model and corresponding new findings in this work are beneficial for accurately predicting the surface roughness of polycrystalline materials and understanding the impacting mechanism of material defects in diamond turning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿雷的宝宝完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助Jy采纳,获得10
2秒前
2秒前
distinct发布了新的文献求助10
3秒前
cqbrain123完成签到,获得积分10
3秒前
sxt发布了新的文献求助10
4秒前
lf发布了新的文献求助30
6秒前
BADFBOA发布了新的文献求助10
8秒前
xxx完成签到,获得积分10
9秒前
10秒前
Jy完成签到,获得积分10
11秒前
Jy发布了新的文献求助10
15秒前
17秒前
sxt完成签到,获得积分20
17秒前
观鹤轩完成签到 ,获得积分10
24秒前
开霁完成签到 ,获得积分10
26秒前
一一完成签到,获得积分10
29秒前
Garra9822完成签到 ,获得积分10
34秒前
BADFBOA关注了科研通微信公众号
43秒前
河豚不擦鞋完成签到 ,获得积分10
44秒前
张步完成签到 ,获得积分10
45秒前
一只滦完成签到,获得积分10
49秒前
米线儿发布了新的文献求助10
50秒前
59秒前
妈妈妈发布了新的文献求助10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
辉哥发布了新的文献求助10
1分钟前
hugeng完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
爆米花应助lan采纳,获得10
1分钟前
AKA学术混子完成签到,获得积分10
1分钟前
迷你的靖雁完成签到,获得积分10
1分钟前
米线儿完成签到,获得积分10
1分钟前
clhoxvpze完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
lan发布了新的文献求助10
1分钟前
妈妈妈关注了科研通微信公众号
1分钟前
温婉的笑晴完成签到,获得积分20
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976608
求助须知:如何正确求助?哪些是违规求助? 3520720
关于积分的说明 11204567
捐赠科研通 3257359
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613