A theoretical and deep learning hybrid model for predicting surface roughness of diamond-turned polycrystalline materials

方向错误 材料科学 表面粗糙度 表面光洁度 微晶 聚晶金刚石 钻石 粒度 复合材料 晶界 冶金 微观结构
作者
Chunlei He,Jiwang Yan,Shuqi Wang,Shuo Zhang,Guang Chen,Chengzu Ren
出处
期刊:International journal of extreme manufacturing [IOP Publishing]
卷期号:5 (3): 035102-035102 被引量:23
标识
DOI:10.1088/2631-7990/acdb0a
摘要

Abstract Polycrystalline materials are extensively employed in industry. Its surface roughness significantly affects the working performance. Material defects, particularly grain boundaries, have a great impact on the achieved surface roughness of polycrystalline materials. However, it is difficult to establish a purely theoretical model for surface roughness with consideration of the grain boundary effect using conventional analytical methods. In this work, a theoretical and deep learning hybrid model for predicting the surface roughness of diamond-turned polycrystalline materials is proposed. The kinematic–dynamic roughness component in relation to the tool profile duplication effect, work material plastic side flow, relative vibration between the diamond tool and workpiece, etc, is theoretically calculated. The material-defect roughness component is modeled with a cascade forward neural network. In the neural network, the ratio of maximum undeformed chip thickness to cutting edge radius R TS , work material properties (misorientation angle θ g and grain size d g ), and spindle rotation speed n s are configured as input variables. The material-defect roughness component is set as the output variable. To validate the developed model, polycrystalline copper with a gradient distribution of grains prepared by friction stir processing is machined with various processing parameters and different diamond tools. Compared with the previously developed model, obvious improvement in the prediction accuracy is observed with this hybrid prediction model. Based on this model, the influences of different factors on the surface roughness of polycrystalline materials are discussed. The influencing mechanism of the misorientation angle and grain size is quantitatively analyzed. Two fracture modes, including transcrystalline and intercrystalline fractures at different R TS values, are observed. Meanwhile, optimal processing parameters are obtained with a simulated annealing algorithm. Cutting experiments are performed with the optimal parameters, and a flat surface finish with Sa 1.314 nm is finally achieved. The developed model and corresponding new findings in this work are beneficial for accurately predicting the surface roughness of polycrystalline materials and understanding the impacting mechanism of material defects in diamond turning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小曾应助pakiorder采纳,获得10
5秒前
wxy完成签到,获得积分10
6秒前
分析完成签到 ,获得积分10
6秒前
hulin_zjxu完成签到,获得积分10
6秒前
桃紫完成签到,获得积分10
8秒前
小董不懂完成签到,获得积分10
9秒前
椰子完成签到,获得积分10
9秒前
沐沐溪三清完成签到,获得积分10
9秒前
10秒前
刘丰完成签到 ,获得积分10
12秒前
郑桂庆完成签到 ,获得积分10
13秒前
zhang完成签到 ,获得积分10
13秒前
yuchen完成签到,获得积分10
14秒前
喜悦的水云完成签到 ,获得积分10
14秒前
15秒前
zhaokunfeng完成签到,获得积分10
15秒前
Y123发布了新的文献求助10
15秒前
wu完成签到,获得积分10
15秒前
高高诗柳完成签到 ,获得积分10
15秒前
王金豪完成签到,获得积分10
15秒前
LSS完成签到,获得积分10
15秒前
榜一大哥的负担完成签到 ,获得积分10
16秒前
Lucas应助qi0625采纳,获得10
16秒前
顾矜应助以筱采纳,获得10
17秒前
景清完成签到,获得积分10
17秒前
细心香烟完成签到 ,获得积分10
17秒前
hu完成签到 ,获得积分10
17秒前
HQ完成签到,获得积分10
17秒前
18秒前
水清木华完成签到,获得积分10
18秒前
19秒前
miao完成签到,获得积分20
19秒前
xyp_zjut应助学术乞丐采纳,获得10
19秒前
Lucas应助凉白开采纳,获得10
19秒前
体贴凌柏发布了新的文献求助10
20秒前
20秒前
20秒前
鹿子完成签到 ,获得积分10
20秒前
秋枫忆完成签到,获得积分10
22秒前
宋立发布了新的文献求助10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029