Multi-Label Local to Global Learning: A Novel Learning Paradigm for Chest X-Ray Abnormality Classification

计算机科学 人工智能 异常 火车 深度学习 集合(抽象数据类型) 机器学习 理论(学习稳定性) 人工神经网络 透视图(图形) 模式识别(心理学) 医学 地图学 精神科 程序设计语言 地理
作者
Z C Liu,Yuanzhi Cheng,Shinichi Tamura
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4409-4420 被引量:2
标识
DOI:10.1109/jbhi.2023.3281466
摘要

Deep neural network (DNN) approaches have shown remarkable progress in automatic Chest X-rays classification. However, existing methods use a training scheme that simultaneously trains all abnormalities without considering their learning priority. Inspired by the clinical practice of radiologists progressively recognizing more abnormalities and the observation that existing curriculum learning (CL) methods based on image difficulty may not be suitable for disease diagnosis, we propose a novel CL paradigm, named multi-label local to global (ML-LGL). This approach iteratively trains DNN models on gradually increasing abnormalities within the dataset, i,e, from fewer abnormalities (local) to more ones (global). At each iteration, we first build the local category by adding high-priority abnormalities for training, and the abnormality's priority is determined by our three proposed clinical knowledge-leveraged selection functions. Then, images containing abnormalities in the local category are gathered to form a new training set. The model is lastly trained on this set using a dynamic loss. Additionally, we demonstrate the superiority of ML-LGL from the perspective of the model's initial stability during training. Experimental results on three open-source datasets, PLCO, ChestX-ray14 and CheXpert show that our proposed learning paradigm outperforms baselines and achieves comparable results to state-of-the-art methods. The improved performance promises potential applications in multi-label Chest X-ray classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kevindm发布了新的文献求助10
1秒前
2秒前
左安完成签到,获得积分10
2秒前
3秒前
知性的囧完成签到,获得积分10
3秒前
3秒前
abc123发布了新的文献求助10
3秒前
讨厌所有人完成签到,获得积分10
3秒前
4秒前
psj完成签到,获得积分10
4秒前
852应助枫溪采纳,获得10
4秒前
5秒前
6秒前
shadow完成签到 ,获得积分10
8秒前
万能图书馆应助小刺猬采纳,获得30
8秒前
滴答发布了新的文献求助30
8秒前
8秒前
8秒前
沅期发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
俭朴奇异果完成签到,获得积分10
11秒前
橙鹿鹿的猫完成签到,获得积分10
11秒前
11秒前
边港洋发布了新的文献求助10
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
16秒前
笨男孩发布了新的文献求助10
16秒前
17秒前
17秒前
wanghao发布了新的文献求助10
17秒前
陈湫完成签到,获得积分10
18秒前
田様应助等待的寒松采纳,获得10
18秒前
害怕的白竹完成签到,获得积分10
19秒前
随心完成签到,获得积分10
19秒前
怕孤单的嚣完成签到,获得积分20
19秒前
lcxw1224完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425