Multi-Label Local to Global Learning: A Novel Learning Paradigm for Chest X-Ray Abnormality Classification

计算机科学 人工智能 异常 火车 深度学习 集合(抽象数据类型) 机器学习 理论(学习稳定性) 人工神经网络 透视图(图形) 模式识别(心理学) 医学 地图学 精神科 程序设计语言 地理
作者
Z C Liu,Yuanzhi Cheng,Shinichi Tamura
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4409-4420 被引量:2
标识
DOI:10.1109/jbhi.2023.3281466
摘要

Deep neural network (DNN) approaches have shown remarkable progress in automatic Chest X-rays classification. However, existing methods use a training scheme that simultaneously trains all abnormalities without considering their learning priority. Inspired by the clinical practice of radiologists progressively recognizing more abnormalities and the observation that existing curriculum learning (CL) methods based on image difficulty may not be suitable for disease diagnosis, we propose a novel CL paradigm, named multi-label local to global (ML-LGL). This approach iteratively trains DNN models on gradually increasing abnormalities within the dataset, i,e, from fewer abnormalities (local) to more ones (global). At each iteration, we first build the local category by adding high-priority abnormalities for training, and the abnormality's priority is determined by our three proposed clinical knowledge-leveraged selection functions. Then, images containing abnormalities in the local category are gathered to form a new training set. The model is lastly trained on this set using a dynamic loss. Additionally, we demonstrate the superiority of ML-LGL from the perspective of the model's initial stability during training. Experimental results on three open-source datasets, PLCO, ChestX-ray14 and CheXpert show that our proposed learning paradigm outperforms baselines and achieves comparable results to state-of-the-art methods. The improved performance promises potential applications in multi-label Chest X-ray classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉南风完成签到,获得积分10
刚刚
CipherSage应助文从文采纳,获得10
1秒前
王了了发布了新的文献求助50
1秒前
希望天下0贩的0应助hyhyhyhy采纳,获得10
2秒前
zmy完成签到,获得积分10
3秒前
fzd完成签到,获得积分10
3秒前
alvinlau发布了新的文献求助10
4秒前
lll发布了新的文献求助10
4秒前
chenchenchen发布了新的文献求助10
5秒前
yydsyyd完成签到 ,获得积分10
5秒前
Jessie完成签到,获得积分10
7秒前
勤恳慕蕊完成签到 ,获得积分10
8秒前
科研通AI2S应助易影采纳,获得10
8秒前
111发布了新的文献求助10
9秒前
傲娇的映梦完成签到 ,获得积分10
9秒前
10秒前
菜菜发布了新的文献求助10
10秒前
大方的飞风完成签到 ,获得积分10
11秒前
TQY发布了新的文献求助30
13秒前
NexusExplorer应助酷炫的毛巾采纳,获得50
14秒前
文从文发布了新的文献求助10
15秒前
chenchenchen发布了新的文献求助10
17秒前
华东少年完成签到,获得积分10
18秒前
111发布了新的文献求助10
18秒前
19秒前
h3xxxmax发布了新的文献求助10
20秒前
乐乐应助光影采纳,获得10
20秒前
22秒前
吃土豆的番茄完成签到,获得积分10
22秒前
22秒前
亦承梦发布了新的文献求助10
24秒前
烟花应助奇利亚斯采纳,获得10
24秒前
小小萝卜头完成签到,获得积分10
24秒前
abol1313完成签到 ,获得积分10
25秒前
丰知然给淡然平灵的求助进行了留言
25秒前
灵巧的凝云应助shanjianjie采纳,获得10
26秒前
27秒前
28秒前
爆米花应助优雅狗采纳,获得10
30秒前
搜集达人应助眉宇方舟采纳,获得10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310147
求助须知:如何正确求助?哪些是违规求助? 2943159
关于积分的说明 8512950
捐赠科研通 2618384
什么是DOI,文献DOI怎么找? 1431040
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649540