Clinical model of pulmonary metastasis in patients with osteosarcoma: A new multiple machine learning-based risk prediction

医学 列线图 接收机工作特性 逻辑回归 内科学 一致性 肿瘤科 队列 转移 曲线下面积 癌症
作者
Zhiping Su,Feihong Huang,Chunyue Yin,Yuezhao Yu,Chaojie Yu
出处
期刊:Journal of orthopaedic surgery [SAGE]
卷期号:31 (2) 被引量:4
标识
DOI:10.1177/10225536231177102
摘要

Background Metastasis is one of the most significant prognostic factors in osteosarcoma (OS). The goal of this study was to construct a clinical prediction model for OS patients in a population cohort and to evaluate the factors influencing the occurrence of pulmonary metastasis. Methods We collected data from 612 patients with osteosarcoma (OS), and 103 clinical indicators were collected. After the data were filtered, the patients were randomly divided into training and validation cohorts by using random sampling. The training cohort included 191 patients with pulmonary metastasis in OS and 126 patients with non-pulmonary metastasis, and the validation cohort included 50 patients with pulmonary metastasis in OS and 57 patients with non-pulmonary metastasis. Univariate logistics regression analysis, LASSO regression analysis and multivariate logistic regression analysis were performed to identify potential risk factors for pulmonary metastasis in patients with osteosarcoma. A nomogram was developed that included risk influencing variables selected by multivariable analysis, and used the concordance index (C-index) and calibration curve to validate the model. Receiver operating characteristic curve (ROC), decision analysis curve (DCA) and clinical impact curve (CIC) were employed to assess the model. In addition, we used a predictive model on the validation cohort. Results Logistic regression analysis was used to identify independent predictors [N Stage + Alkaline phosphatase (ALP)+Thyroid stimulating hormone (TSH)+Free triiodothyronine (FT3)]. A nomogram was constructed to predict the risk of pulmonary metastasis in patients with osteosarcoma. The performance was evaluated by the concordance index (C-index) and calibration curve. The ROC curve provides the predictive power of the nomogram (AUC = 0.701 in the training cohort, AUC = 0.786 in the training cohort). Decision curve analysis (DCA) and clinical impact curve (CIC) demonstrated the clinical value of the nomogram and higher overall net benefits. Conclusions Our study can help clinicians effectively predict the risk of lung metastases in osteosarcoma with more readily available clinical indicators, provide more personalized diagnosis and treatment guidance, and improve the prognosis of patients. Mini Abstract A new risk model was constructed to predict the pulmonary metastasis in patients with osteosarcoma based on multiple machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助BINbin采纳,获得10
刚刚
1秒前
1秒前
林晓筱完成签到,获得积分10
2秒前
llll完成签到,获得积分10
2秒前
3秒前
3秒前
扑流萤发布了新的文献求助10
3秒前
研友_VZG7GZ应助踏实寄松采纳,获得10
3秒前
4秒前
koli发布了新的文献求助10
4秒前
4秒前
4秒前
Shayulajiao完成签到,获得积分10
5秒前
羊六七完成签到,获得积分10
5秒前
萤火虫发布了新的文献求助20
5秒前
夏天无发布了新的文献求助10
5秒前
6秒前
Yang完成签到,获得积分10
7秒前
8秒前
chixueqi发布了新的文献求助10
8秒前
布布发布了新的文献求助10
8秒前
9秒前
Owen应助1234采纳,获得10
9秒前
关于关于发布了新的文献求助10
9秒前
李昕123完成签到 ,获得积分10
9秒前
彭于晏应助ran采纳,获得30
10秒前
CodeCraft应助ee采纳,获得10
11秒前
秦慧萍发布了新的文献求助10
11秒前
111发布了新的文献求助10
11秒前
赘婿应助翻斗花园牛爷爷采纳,获得10
11秒前
11秒前
ding应助YWL采纳,获得10
11秒前
kk发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
白拜完成签到 ,获得积分10
13秒前
15秒前
爆爆应助mxbqaq采纳,获得10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458562
求助须知:如何正确求助?哪些是违规求助? 3053394
关于积分的说明 9036264
捐赠科研通 2742665
什么是DOI,文献DOI怎么找? 1504448
科研通“疑难数据库(出版商)”最低求助积分说明 695292
邀请新用户注册赠送积分活动 694455