Space object detection algorithm based on adaptive feature texture enhancement and receptive field adjustment

计算机科学 人工智能 卷积(计算机科学) 卷积神经网络 模式识别(心理学) 像素 特征(语言学) 目标检测 计算机视觉 缩放空间 插值(计算机图形学) 平滑的 人工神经网络 图像处理 图像(数学) 哲学 语言学
作者
Yuman Yuan,Hongwei Guo,Zhuo Liang,Weiwei Qin,Nan Yu,Gang Wan
标识
DOI:10.1117/12.2664616
摘要

With the continuous development of artificial intelligence, the use of deep learning to achieve intelligent space object detection has become a new research trend. Space-based observation platforms are affected by the space environment with many problems such as small scale of space object, large amount of noise, low recognition and little extractable information. To address the above issues, an improved fully convolutional one-stage object detection (FCOS) model based on adaptive feature texture enhancement and receptive field adjustment is proposed. To address the problem of pixel smoothing and detail loss caused by up sampling in convolutional neural networks (CNN), this paper proposes a texture detail enhancement module (TDEM), which is based on sub-pixel convolution to achieve effective scaling of the feature map by automatically learning the interpolation function and enhance the correlation between the pixels of the image while suppressing irrelevant features. In addition, in order to obtain more dense features and appropriate receptive fields, an adaptive receptive field adjustment module (ARFAM) is proposed by using densely connected dilated convolution and attention mechanism to enrich the contextual information around the object and improve the detection capability of the model. This paper constructs the SDM dataset, which contains 6842 images and three categories of satellites, debris, and meteorites. The experimental results on the SDM dataset show that our method achieves the mAP of 73.9%, which illustrates detection performance is significantly better than the mainstream algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈晚拧完成签到 ,获得积分10
1秒前
1秒前
2秒前
lvy完成签到 ,获得积分10
2秒前
聪慧不可完成签到,获得积分10
2秒前
Lucas应助拿不动刀的胖虎采纳,获得10
3秒前
4秒前
chenxi3099发布了新的文献求助10
4秒前
5秒前
繁荣的又亦完成签到 ,获得积分10
5秒前
银白曙光完成签到,获得积分20
6秒前
6秒前
7秒前
胡图图完成签到,获得积分10
7秒前
核桃应助妙妙宝贝采纳,获得30
7秒前
8秒前
lpp_发布了新的文献求助10
8秒前
满意曼荷发布了新的文献求助30
9秒前
所所应助LLLLLI采纳,获得10
9秒前
万能图书馆应助蘑菇蘑菇采纳,获得10
9秒前
lc发布了新的文献求助10
11秒前
进击的然发布了新的文献求助10
11秒前
SciGPT应助lucky采纳,获得10
11秒前
chenxi3099完成签到,获得积分10
11秒前
银白曙光发布了新的文献求助10
11秒前
欢喜的小伙完成签到,获得积分10
11秒前
漂亮灵阳完成签到,获得积分10
13秒前
13秒前
13秒前
Hello应助无宇伦比采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
Vanilla应助遥感小虫采纳,获得30
16秒前
lc完成签到,获得积分10
16秒前
16秒前
17秒前
rrrryym发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531011
求助须知:如何正确求助?哪些是违规求助? 4619962
关于积分的说明 14570839
捐赠科研通 4559429
什么是DOI,文献DOI怎么找? 2498419
邀请新用户注册赠送积分活动 1478380
关于科研通互助平台的介绍 1449913