黑森矩阵
计算机科学
估计员
计算
趋同(经济学)
反演(地质)
算法
数学优化
牛顿法
比例(比率)
应用数学
数学
统计
构造盆地
物理
生物
古生物学
非线性系统
经济
量子力学
经济增长
作者
Shoujun Wu,Danyang Huang,Hansheng Wang
标识
DOI:10.1093/jrsssb/qkad059
摘要
Abstract Distributed computing is critically important for modern statistical analysis. Herein, we develop a distributed quasi-Newton (DQN) framework with excellent statistical, computation, and communication efficiency. In the DQN method, no Hessian matrix inversion or communication is needed. This considerably reduces the computation and communication complexity of the proposed method. Notably, related existing methods only analyse numerical convergence and require a diverging number of iterations to converge. However, we investigate the statistical properties of the DQN method and theoretically demonstrate that the resulting estimator is statistically efficient over a small number of iterations under mild conditions. Extensive numerical analyses demonstrate the finite sample performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI