亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pathophysiological interpretation of fetal heart rate tracings in clinical practice

医学 胎儿 胎心率 脐带 绳索 心脏病学 心率 人口 产科 内科学 怀孕 外科 血压 解剖 生物 环境卫生 遗传学
作者
Yan‐Ju Jia,T. Ghi,Susana Pereira,Anna Gracia Perez-Bonfils,Edwin Chandraharan
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier]
卷期号:228 (6): 622-644 被引量:21
标识
DOI:10.1016/j.ajog.2022.05.023
摘要

The onset of regular, strong, and progressive uterine contractions may result in both mechanical (compression of the fetal head and/or umbilical cord) and hypoxic (repetitive and sustained compression of the umbilical cord or reduction in uteroplacental oxygenation) stresses to a human fetus. Most fetuses are able to mount effective compensatory responses to avoid hypoxic-ischemic encephalopathy and perinatal death secondary to the onset of anaerobic metabolism within the myocardium, culminating in myocardial lactic acidosis. In addition, the presence of fetal hemoglobin, which has a higher affinity for oxygen even at low partial pressures of oxygen than the adult hemoglobin, especially increased amounts of fetal hemoglobin (ie, 180–220 g/L in fetuses vs 110–140 g/L in adults), helps the fetus to withstand hypoxic stresses during labor. Different national and international guidelines are currently being used for intrapartum fetal heart rate interpretation. These traditional classification systems for fetal heart rate interpretation during labor are based on grouping certain features of fetal heart rate (ie, baseline fetal heart rate, baseline variability, accelerations, and decelerations) into different categories (eg, category I, II, and III tracings, “normal, suspicious, and pathologic” or “normal, intermediary, and abnormal”). These guidelines differ from each other because of the features included within different categories and because of their arbitrary time limits stipulated for each feature to warrant an obstetrical intervention. This approach fails to individualize care because the “ranges of normality” for stipulated parameters apply to the population of human fetuses and not to the individual fetus in question. Moreover, different fetuses have different reserves and compensatory responses and different intrauterine environments (presence of meconium staining of amniotic fluid, intrauterine inflammation, and the nature of uterine activity). Pathophysiological interpretation of fetal heart rate tracing is based on the application of the knowledge of fetal responses to intrapartum mechanical and/or hypoxic stress in clinical practice. Both experimental animal studies and observational human studies suggest that, just like adults undertaking a treadmill exercise, human fetuses show predictable compensatory responses to a progressively evolving intrapartum hypoxic stress. These responses include the onset of decelerations to reduce myocardial workload and preserve aerobic metabolism, loss of accelerations to abolish nonessential somatic body movements, and catecholamine-mediated increases in the baseline fetal heart rate and effective redistribution and centralization to protect the fetal central organs (ie, the heart, brain, and adrenal glands), which are essential for intrauterine survival. Moreover, it is essential to incorporate the clinical context (progress of labor, fetal size and reserves, presence of meconium staining of amniotic fluid and intrauterine inflammation, and fetal anemia) and understand the features suggestive of fetal compromise in nonhypoxic pathways (eg, chorioamnionitis and fetomaternal hemorrhage). It is important to appreciate that the timely recognition of the speed of onset of intrapartum hypoxia (ie, acute, subacute, and gradually evolving) and preexisting uteroplacental insufficiency (ie, chronic hypoxia) on fetal heart rate tracing is crucial to improve perinatal outcomes. The onset of regular, strong, and progressive uterine contractions may result in both mechanical (compression of the fetal head and/or umbilical cord) and hypoxic (repetitive and sustained compression of the umbilical cord or reduction in uteroplacental oxygenation) stresses to a human fetus. Most fetuses are able to mount effective compensatory responses to avoid hypoxic-ischemic encephalopathy and perinatal death secondary to the onset of anaerobic metabolism within the myocardium, culminating in myocardial lactic acidosis. In addition, the presence of fetal hemoglobin, which has a higher affinity for oxygen even at low partial pressures of oxygen than the adult hemoglobin, especially increased amounts of fetal hemoglobin (ie, 180–220 g/L in fetuses vs 110–140 g/L in adults), helps the fetus to withstand hypoxic stresses during labor. Different national and international guidelines are currently being used for intrapartum fetal heart rate interpretation. These traditional classification systems for fetal heart rate interpretation during labor are based on grouping certain features of fetal heart rate (ie, baseline fetal heart rate, baseline variability, accelerations, and decelerations) into different categories (eg, category I, II, and III tracings, “normal, suspicious, and pathologic” or “normal, intermediary, and abnormal”). These guidelines differ from each other because of the features included within different categories and because of their arbitrary time limits stipulated for each feature to warrant an obstetrical intervention. This approach fails to individualize care because the “ranges of normality” for stipulated parameters apply to the population of human fetuses and not to the individual fetus in question. Moreover, different fetuses have different reserves and compensatory responses and different intrauterine environments (presence of meconium staining of amniotic fluid, intrauterine inflammation, and the nature of uterine activity). Pathophysiological interpretation of fetal heart rate tracing is based on the application of the knowledge of fetal responses to intrapartum mechanical and/or hypoxic stress in clinical practice. Both experimental animal studies and observational human studies suggest that, just like adults undertaking a treadmill exercise, human fetuses show predictable compensatory responses to a progressively evolving intrapartum hypoxic stress. These responses include the onset of decelerations to reduce myocardial workload and preserve aerobic metabolism, loss of accelerations to abolish nonessential somatic body movements, and catecholamine-mediated increases in the baseline fetal heart rate and effective redistribution and centralization to protect the fetal central organs (ie, the heart, brain, and adrenal glands), which are essential for intrauterine survival. Moreover, it is essential to incorporate the clinical context (progress of labor, fetal size and reserves, presence of meconium staining of amniotic fluid and intrauterine inflammation, and fetal anemia) and understand the features suggestive of fetal compromise in nonhypoxic pathways (eg, chorioamnionitis and fetomaternal hemorrhage). It is important to appreciate that the timely recognition of the speed of onset of intrapartum hypoxia (ie, acute, subacute, and gradually evolving) and preexisting uteroplacental insufficiency (ie, chronic hypoxia) on fetal heart rate tracing is crucial to improve perinatal outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
隐形问萍发布了新的文献求助10
13秒前
医路通行发布了新的文献求助20
13秒前
樊冀鑫完成签到 ,获得积分10
31秒前
41秒前
xx发布了新的文献求助10
47秒前
我是老大应助有人采纳,获得30
48秒前
黑嘿嘿嘿嘿嘿关注了科研通微信公众号
53秒前
56秒前
今后应助xx采纳,获得10
56秒前
小欢发布了新的文献求助10
1分钟前
1分钟前
小欢完成签到,获得积分10
1分钟前
wl完成签到 ,获得积分10
1分钟前
whatever应助枯藤老柳树采纳,获得30
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
1分钟前
pathway发布了新的文献求助10
1分钟前
CodeCraft应助pathway采纳,获得10
1分钟前
枯藤老柳树完成签到,获得积分10
1分钟前
yaoyaoyao完成签到 ,获得积分10
1分钟前
2分钟前
汤汤完成签到 ,获得积分10
2分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
无花果应助科研通管家采纳,获得10
3分钟前
疯狂喵完成签到 ,获得积分10
3分钟前
谢小盟完成签到 ,获得积分10
4分钟前
4分钟前
seren_liu发布了新的文献求助10
4分钟前
张张完成签到 ,获得积分10
4分钟前
ldysaber完成签到,获得积分10
4分钟前
ma完成签到 ,获得积分10
5分钟前
xiangwang完成签到 ,获得积分10
5分钟前
想不出来完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
小凯完成签到 ,获得积分10
5分钟前
5分钟前
chxxxxx发布了新的文献求助30
5分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784091
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299638
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989