Spatial–temporal distribution patterns and influencing factors analysis of comorbidity prevalence of chronic diseases among middle-aged and elderly people in China: focusing on exposure to ambient fine particulate matter (PM2.5)

医学 生物统计学 环境卫生 流行病学 中国 公共卫生 微粒 共病 老年学 人口学 地理 病理 生态学 考古 社会学 生物
作者
Liangwen Zhang,Wei Liu,Ya Fang
出处
期刊:BMC Public Health [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12889-024-17986-0
摘要

Objective This study describes regional differences and dynamic changes in the prevalence of comorbidities among middle-aged and elderly people with chronic diseases (PCMC) in China from 2011–2018, and explores distribution patterns and the relationship between PM 2.5 and PCMC, aiming to provide data support for regional prevention and control measures for chronic disease comorbidities in China. Methods This study utilized CHARLS follow-up data for ≥ 45-year-old individuals from 2011, 2013, 2015, and 2018 as research subjects. Missing values were filled using the random forest machine learning method. PCMC spatial clustering investigated using spatial autocorrelation methods. The relationship between macro factors and PCMC was examined using Geographically and Temporally Weighted Regression, Ordinary Linear Regression, and Geographically Weighted Regression. Results PCMC in China showing a decreasing trend. Hotspots of PCMC appeared mainly in western and northern provinces, while cold spots were in southeastern coastal provinces. PM 2.5 content was a risk factor for PCMC, the range of influence expanded from the southeastern coastal areas to inland areas, and the magnitude of influence decreased from the southeastern coastal areas to inland areas. Conclusion PM 2.5 content, as a risk factor, should be given special attention, taking into account regional factors. In the future, policy-makers should develop stricter air pollution control policies based on different regional economic, demographic, and geographic factors, while promoting public education, increasing public transportation, and urban green coverage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyrong发布了新的文献求助10
1秒前
无花果应助llm采纳,获得10
1秒前
akan完成签到,获得积分10
2秒前
独特凌柏发布了新的文献求助30
2秒前
3秒前
潘潘发布了新的文献求助10
3秒前
龙思甜完成签到,获得积分10
3秒前
Dean发布了新的文献求助10
4秒前
dada完成签到,获得积分10
4秒前
Plasmacas完成签到,获得积分10
4秒前
4秒前
ding应助feilong采纳,获得10
7秒前
烟花应助受伤白昼采纳,获得10
7秒前
SYLH应助故人采纳,获得30
7秒前
龙思甜发布了新的文献求助10
9秒前
10秒前
吨吨发布了新的文献求助10
10秒前
12秒前
12秒前
Lucas应助逆风采纳,获得10
14秒前
Brave发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
今后应助黄沙漠采纳,获得10
17秒前
17秒前
受伤白昼发布了新的文献求助10
17秒前
18秒前
和和和完成签到,获得积分10
18秒前
zhao完成签到,获得积分10
18秒前
饺子完成签到,获得积分10
18秒前
曹kn发布了新的文献求助10
18秒前
窗户上的喵咪很无聊完成签到 ,获得积分10
19秒前
藤井树发布了新的文献求助10
20秒前
上官若男应助缥缈纲采纳,获得10
20秒前
liwang发布了新的文献求助10
20秒前
Estelle.发布了新的文献求助10
21秒前
21秒前
577610822发布了新的文献求助30
21秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465285
求助须知:如何正确求助?哪些是违规求助? 3058476
关于积分的说明 9061679
捐赠科研通 2748770
什么是DOI,文献DOI怎么找? 1508120
科研通“疑难数据库(出版商)”最低求助积分说明 696783
邀请新用户注册赠送积分活动 696467