亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Making food systems more resilient to food safety risks by including artificial intelligence, big data, and internet of things into food safety early warning and emerging risk identification tools

预警系统 食品安全 弹性(材料科学) 鉴定(生物学) 风险分析(工程) 业务 大数据 预警系统 新兴技术 计算机安全 计算机科学 人工智能 电信 医学 生物 热力学 操作系统 植物 物理 病理
作者
Wenjuan Mu,G.A. Kleter,Yamine Bouzembrak,Eleonora Dupouy,Lynn J. Frewer,Fadi Naser Radwan Al Natour,H.J.P. Marvin
出处
期刊:Comprehensive Reviews in Food Science and Food Safety [Wiley]
卷期号:23 (1) 被引量:20
标识
DOI:10.1111/1541-4337.13296
摘要

Abstract To enhance the resilience of food systems to food safety risks, it is vitally important for national authorities and international organizations to be able to identify emerging food safety risks and to provide early warning signals in a timely manner. This review provides an overview of existing and experimental applications of artificial intelligence (AI), big data, and internet of things as part of early warning and emerging risk identification tools and methods in the food safety domain. There is an ongoing rapid development of systems fed by numerous, real‐time, and diverse data with the aim of early warning and identification of emerging food safety risks. The suitability of big data and AI to support such systems is illustrated by two cases in which climate change drives the emergence of risks, namely, harmful algal blooms affecting seafood and fungal growth and mycotoxin formation in crops. Automation and machine learning are crucial for the development of future real‐time food safety risk early warning systems. Although these developments increase the feasibility and effectiveness of prospective early warning and emerging risk identification tools, their implementation may prove challenging, particularly for low‐ and middle‐income countries due to low connectivity and data availability. It is advocated to overcome these challenges by improving the capability and capacity of national authorities, as well as by enhancing their collaboration with the private sector and international organizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jyy完成签到,获得积分10
4秒前
汉堡包应助寒夏采纳,获得10
4秒前
5秒前
7秒前
科研通AI2S应助卡西莫多采纳,获得10
10秒前
Magan发布了新的文献求助10
12秒前
小泉发布了新的文献求助10
12秒前
13秒前
16秒前
我是站长才怪应助何沁采纳,获得10
17秒前
调研昵称发布了新的文献求助10
21秒前
JamesPei应助DD采纳,获得10
21秒前
科研通AI2S应助刘忠媛采纳,获得10
21秒前
LULU完成签到,获得积分10
23秒前
33秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
寒夏发布了新的文献求助10
37秒前
Qintt完成签到 ,获得积分10
37秒前
39秒前
在水一方应助艺玲采纳,获得10
42秒前
寒夏完成签到,获得积分10
44秒前
大学生完成签到 ,获得积分10
47秒前
任性静祝完成签到 ,获得积分10
47秒前
49秒前
tianxiong发布了新的文献求助10
55秒前
56秒前
dream177777完成签到 ,获得积分10
1分钟前
1分钟前
上官若男应助Kansoku采纳,获得10
1分钟前
8R60d8应助ldj6670采纳,获得10
1分钟前
福同学完成签到,获得积分10
1分钟前
聪慧的三问完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
月亮完成签到 ,获得积分10
1分钟前
科研巨额发布了新的文献求助10
1分钟前
1分钟前
呜呼啦呼完成签到 ,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335213
求助须知:如何正确求助?哪些是违规求助? 2964462
关于积分的说明 8613781
捐赠科研通 2643316
什么是DOI,文献DOI怎么找? 1447277
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658953