Nuclei segmentation using attention aware and adversarial networks

对抗制 计算机科学 分割 人工智能 模式识别(心理学) 机器学习
作者
Evgin Göçeri
出处
期刊:Neurocomputing [Elsevier]
卷期号:579: 127445-127445 被引量:5
标识
DOI:10.1016/j.neucom.2024.127445
摘要

Accurate segmentation of nuclei plays a critical role in pathology since assessments and diagnoses are mainly based on the recognition, measurement, and counting of nuclei. However, in digital pathology, automated nucleus segmentation is a challenging issue because of various factors such as color inconsistency in stained images, unclear nucleus boundaries, low contrast between background and nuclei, different shapes and sizes of nuclei, and intensity inhomogeneity not only inside nuclei but also across them and the background. In this work, an efficient method has been developed for nuclei segmentation. Its efficiency has been achieved through tissue and chemical invariant normalization, feature extraction with dense convolution layers, merging of local and global features, mask generation, and adversarial learning. For fair comparisons, state-of-the-art nuclei segmentations have been employed to the same data sets, and their performances have been evaluated using the same metrics. This paper's main contributions are threefold: (i) Introducing a novel technique for nuclei segmentation using an adversarial network and a hybrid attention-aware network. (ii) Presenting the effective merging of global and local features to enhance pattern recognition, and the utilization of efficient hybrid attention blocks for extracting desired global information and improving relationships between feature regions at different locations. (iii) Presenting experimental results showing that the proposed technique accomplishes nuclei detection and extraction with higher accuracy (a minimum improvement of 3.7%) than other recent methods. Also, each stage provides considerable contributions to the segmentation performance. Particularly, the hybrid attention-aware network has improved the performance by 4.2% according to the dice coefficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七大洋的风完成签到,获得积分10
刚刚
刚刚
spencer177完成签到,获得积分10
刚刚
陈卓完成签到,获得积分10
刚刚
脑洞疼应助菠萝蜜采纳,获得10
1秒前
1秒前
早起完成签到,获得积分10
2秒前
3秒前
Ricardo完成签到 ,获得积分10
3秒前
希望天下0贩的0应助zhouzhou采纳,获得20
4秒前
CJW完成签到 ,获得积分10
4秒前
Hachi完成签到,获得积分10
4秒前
无奈曼云完成签到,获得积分10
5秒前
慕青应助扶光采纳,获得10
6秒前
Lala完成签到 ,获得积分10
6秒前
小马甲应助努力发文章采纳,获得10
6秒前
7秒前
7秒前
Drwenlu发布了新的文献求助10
7秒前
yanyu完成签到,获得积分20
8秒前
zhouzhou完成签到,获得积分10
9秒前
9秒前
yoyofun完成签到 ,获得积分10
9秒前
9秒前
流火完成签到,获得积分10
9秒前
Hachi发布了新的文献求助10
10秒前
科研通AI2S应助体贴的苞络采纳,获得10
10秒前
一颗小番茄完成签到,获得积分10
10秒前
10秒前
Xxlu完成签到,获得积分20
11秒前
如意厉完成签到,获得积分10
11秒前
科研通AI2S应助真德秀先生采纳,获得10
11秒前
东方红发布了新的文献求助10
12秒前
震动的若山完成签到,获得积分10
12秒前
潇洒冷雪完成签到,获得积分10
12秒前
12秒前
娄心昊完成签到,获得积分10
13秒前
Owen应助旺仔仔采纳,获得10
13秒前
阔达的凡发布了新的文献求助10
13秒前
SciGPT应助WANG采纳,获得10
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3172033
求助须知:如何正确求助?哪些是违规求助? 2822748
关于积分的说明 7942297
捐赠科研通 2483834
什么是DOI,文献DOI怎么找? 1323186
科研通“疑难数据库(出版商)”最低求助积分说明 633893
版权声明 602647