计算机科学
公制(单位)
图像融合
人工智能
光学(聚焦)
统计的
卷积神经网络
基本事实
数据挖掘
一致性(知识库)
图像质量
领域(数学)
图像(数学)
模式识别(心理学)
机器学习
数学
统计
物理
光学
运营管理
纯数学
经济
作者
Yu Liu,Zhengzheng Qi,Juan Cheng,Xun Chen
标识
DOI:10.1109/tpami.2024.3367905
摘要
As an effective technique to extend the depth-of-field (DOF) of optical lenses, multi-focus image fusion has recently become an active topic in image processing community. However, a major problem remaining unsolved in this field is the lack of universal criteria in selecting objective evaluation metrics. Consequently, the metrics utilized in different studies often vary significantly, leading to high difficulties in achieving unbiased evaluation. To address this problem, this paper proposes a statistic-based approach for verifying the effectiveness of objective metrics in multi-focus image fusion. The core idea is to adopt statistical correlation measures to evaluate the performance consistency between a certain fusion metric and some popular full-reference image quality assessment models. In addition, a convolutional neural network (CNN)-based fusion metric is presented to measure the similarity between the source images and the fused image based on the semantic features at multiple abstraction levels. A comparative study is conducted to evaluate 20 existing fusion metrics using the proposed statistic-based approach on a large-scale, realistic and with-ground-truth multi-focus image fusion dataset recently released. Experimental results demonstrate the feasibility of the proposed approach in evaluating the effectiveness of objective metrics and the advantage of our CNN-based metric.
科研通智能强力驱动
Strongly Powered by AbleSci AI