材料科学
水溶液
锌
离子
金属
Boosting(机器学习)
电荷(物理)
超短脉冲
纳米技术
冶金
物理化学
有机化学
化学
光学
物理
机器学习
激光器
量子力学
计算机科学
作者
Xiaoyun Xu,Songmei Sun,Zhenjiang Cao,Shubin Yang,Bin Li
标识
DOI:10.1002/aenm.202303971
摘要
Abstract A key challenge to apply aqueous zinc metal batteries (AZMBs) as next‐generation energy storage device is to improve the rechargeability at high current densities, which is needed to circumvent slowly ion diffusion in anode and sluggish charge transfer of Zn 2+ . Herein, a zincophilic accordion array derived from MOF is developed as zinc host for simultaneously boosted ion diffusion and charge transfer. The designed host is prepared by etching and disproportionation reactions, the abundant zincophilic Sn sites with nano‐size uniform disperse on accordion arrays nanosheets (Sn‐AA). Then a composite Zn anode (Sn‐AA@Zn) is obtained by compacting Sn‐AA host with zinc power (Zn‐P). The Sn‐AA@Zn anode has an ultra‐low activation energy (37.1 kJ mol −1 ) and nucleation overpotential (10 mV), achieving fast charge transfer of Zinc deposition. In addition, the cycle life of the symmetric cell with Sn‐AA@Zn anode exceeds 13 000 cycles at 50 mA cm −2 , which is 32 times than that of the Zn‐P anode. And the full cell with Sn‐AA@Zn anode and MnO 2 cathode maintains a capacity of 122 mAh g −1 after 5000 cycles at 5 Ag −1 . Hopefully, the 3D anode based on Sn‐AA@Zn accordion array and Zn‐P has significantly improved the rechargeability of AZMB at high current density.
科研通智能强力驱动
Strongly Powered by AbleSci AI