亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Asymmetric Atomic Tin Catalysts with Tailored p‐Orbital Electron Structure for Ultra‐Efficient Oxygen Reduction

材料科学 氧还原反应 催化作用 还原(数学) 电子 氧气 纳米技术 物理化学 冶金 电化学 化学 物理 几何学 量子力学 有机化学 生物化学 数学 电极
作者
Xuanni Lin,Xinqiang Zhang,Dong Liu,Lei Shi,Linjie Zhao,Yongde Long,Liming Dai
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:14 (12) 被引量:51
标识
DOI:10.1002/aenm.202303740
摘要

Abstract Atomically dispersed transition metal–nitrogen–carbon (M–N–C) catalysts guide by the d‐band center theory have been extensively studied for oxygen reduction reaction (ORR) in various energy conversion and storage processes. However, asymmetric p‐block metal single‐atom catalysts (SACs) toward ORR have rarely been reported, and the origin of their catalytic activity is still unclear. Here, an asymmetric N, O coordinated Sn SAC is developed as an efficient ORR electrocatalyst. Remarkably, the optimized Sn SAC (e.g., Sn–N/O–C) exhibit outstanding ORR performance with a half‐wave potential of 0.910 V in alkaline media, outperforming most state‐of‐the‐art ORR catalysts. More importantly, the Sn–N/O–C possesses a long‐term durability in both alkaline and acidic electrolytes. Besides, Zn–air batteries based on the Sn–N/O–C cathode also show a higher energy density (254 mW cm ‐2 ) than that of their reported M–N–C counterparts. Theoretical calculations suggest that the asymmetric N, O coordinated atomic Sn sites have a stronger binding interaction with O 2 and better charge transfer ability compared with the symmetric SnN 4 sites, thereby facilitating the ORR process. This work provides a nitrogen‐, oxygen‐coordinated engineering strategy for the rational design of highly active and durable carbon‐based catalysts with atomic p‐block metal sites for ORR and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZJ完成签到,获得积分10
10秒前
机灵哈密瓜完成签到 ,获得积分10
11秒前
bible完成签到,获得积分10
13秒前
包破茧完成签到,获得积分0
14秒前
小二郎应助shining采纳,获得10
17秒前
27秒前
情怀应助Wu采纳,获得10
30秒前
123完成签到,获得积分10
30秒前
害羞的书芹完成签到,获得积分10
31秒前
31秒前
shining发布了新的文献求助10
32秒前
情怀应助vinss66home采纳,获得10
34秒前
Oculus完成签到 ,获得积分10
34秒前
Lemon发布了新的文献求助10
35秒前
roetfff发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助10
39秒前
儒雅的十八完成签到,获得积分10
40秒前
小马甲应助公西凝芙采纳,获得10
41秒前
Jack完成签到 ,获得积分10
44秒前
若宫伊芙完成签到,获得积分10
44秒前
shining完成签到,获得积分20
46秒前
年少丶完成签到,获得积分10
47秒前
浩瀚完成签到,获得积分10
49秒前
开心快乐水完成签到 ,获得积分10
49秒前
学不完了完成签到 ,获得积分10
49秒前
冷静的访天完成签到 ,获得积分10
55秒前
专注冰棍完成签到 ,获得积分10
59秒前
78888完成签到 ,获得积分10
1分钟前
lmm完成签到 ,获得积分10
1分钟前
1分钟前
ZYP发布了新的文献求助10
1分钟前
1分钟前
Dylan完成签到 ,获得积分10
1分钟前
CJY发布了新的文献求助10
1分钟前
1分钟前
佳佳发布了新的文献求助10
1分钟前
神勇涵菡关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
Song完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639400
求助须知:如何正确求助?哪些是违规求助? 4748105
关于积分的说明 15006290
捐赠科研通 4797572
什么是DOI,文献DOI怎么找? 2563546
邀请新用户注册赠送积分活动 1522573
关于科研通互助平台的介绍 1482258