Stable WO3 electrochromic system based on NH4+ hydrogen bond chemistry

电致变色 三氧化钨 电解质 电致变色装置 材料科学 无机化学 碱金属 化学 光化学 化学工程 电极 有机化学 物理化学 工程类
作者
Jiasong Zhong,Bingkun Huang,Jae Min Song,Xiaolong Zhang,Lei Du,Yanfeng Gao,Wei Liu,Litao Kang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:480: 148098-148098 被引量:1
标识
DOI:10.1016/j.cej.2023.148098
摘要

As the best-known and extensively-studied electrochromic material, tungsten trioxide (WO3) has drawn tremendous interest due to its low material cost, environmental benignity, dual band regulation high optical modulation, and high chemical stability. However, these films always suffer from ion-trapping-induced degradation in electrochromic performance when cycled in alkali cation (such as Li+, Na+, K+, etc.) electrolytes. Herein, we report a stable WO3 electrochromic system based on NH4CF3SO3-TEP (Triethyl phosphate) organic electrolyte. Based on comparative experiments and systematic characterizations, the prolonged cycling stability is mainly attributed to the formation of hydrogen bonds between NH4+ ions and WO3 lattice, which is much weaker than metallic coordination bonds. Furthermore, the bulky CF3SO3− anion and large TEP solvent molecule are also favorable to stabilize WO3, since they are more resistive to be co-inserted into the WO3 lattice along with the shuttling NH4+ cation. Thanks to these merits, this NH4CF3SO3-TEP electrolyte simultaneously enables great electrochromic activity (76.1 % transmittance modulating ability at 633 nm) and impressive cyclic color-switching stability (1000 times color change without any detectable electrochromic performance or mechanical degradation), overwhelmingly outperforming the conventional Li+/K+ electrolytes. Furthermore, as a demonstration of its application, a WO3/Zn electrochromic device is fabricated based on a NH4+/Zn2+-CF3SO3 dual-cation TEP electrolyte. These findings may shed light on the in-depth understanding of WO3′s “ion trapping” effect, as well as the electrolyte design of high-performance WO3-based electrochromic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助大意的梦山采纳,获得10
1秒前
研友_89jWGL发布了新的文献求助10
1秒前
山河入怀发布了新的文献求助10
2秒前
夏弋完成签到,获得积分10
2秒前
拼搏尔风发布了新的文献求助10
2秒前
2秒前
1111111111发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
一小部分我完成签到 ,获得积分10
4秒前
Eusha完成签到,获得积分10
4秒前
4秒前
白志文发布了新的文献求助10
4秒前
专注鱼发布了新的文献求助10
4秒前
7秒前
8秒前
8秒前
文献的发布了新的文献求助10
8秒前
9秒前
qiu完成签到,获得积分10
9秒前
9秒前
所所应助何哈哈采纳,获得10
9秒前
tanwenbin发布了新的文献求助10
10秒前
鉴衡完成签到,获得积分10
10秒前
大意的梦山完成签到,获得积分20
11秒前
三七发布了新的文献求助10
11秒前
11秒前
11秒前
科研通AI2S应助fan采纳,获得10
11秒前
xy完成签到,获得积分10
12秒前
研友_89jWGL完成签到,获得积分10
12秒前
12秒前
lyn完成签到,获得积分10
13秒前
13秒前
sadasd完成签到,获得积分10
13秒前
14秒前
鉴衡发布了新的文献求助10
14秒前
在水一方应助如意猕猴桃采纳,获得30
14秒前
CipherSage应助1111111111采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135254
求助须知:如何正确求助?哪些是违规求助? 2786259
关于积分的说明 7776312
捐赠科研通 2442153
什么是DOI,文献DOI怎么找? 1298474
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847