Artificial intelligence, household financial fragility and energy resources consumption: Impacts of digital disruption from a demand-based perspective

内生性 能源消耗 经济 消费(社会学) 能源匮乏 高效能源利用 家庭收入 环境经济学 计量经济学 生物 历史 电气工程 工程类 病理 社会学 医学 考古 替代医学 社会科学 灵丹妙药 生态学
作者
Chao Li,Yuhan Zhang,Xiang Li,Yanwei Hao
出处
期刊:Resources Policy [Elsevier]
卷期号:88: 104469-104469 被引量:3
标识
DOI:10.1016/j.resourpol.2023.104469
摘要

Ensuring access to affordable energy for all is laid out among the 17 Sustainable Development Goals and it remains an important open question as to how the popularity and widespread application of artificial intelligence (AI) in the workforce impact household energy resources consumption. To systematically investigate the impacts of the application of artificial intelligence in the workforce on household energy consumption in China, empirical analysis is conducted using data from the China General Social Survey (CGSS) from May to September 2022. The findings are as follows: (1) AI significantly reduces household energy consumption. Controlling other factors constant, for a one-standard-deviation increase in the impact of AI, household energy consumption drops by an average of 10.751%. Robustness and endogeneity tests, including dealing with missing values, using different energy consumption and AI indicators, as well as applying instrumental variable method, placebo test and penalized regressions, confirm this conclusion. (2) Mechanism analysis shows that AI reduces energy consumption by lowering household income and increasing their financial fragility. (3) AI's impacts on different types of energy consumption are heterogeneous. Its negative effects are mainly observed in the significant reduction of electricity and gas consumption. Furthermore, it increases the probability of using solid fuels such as honeycomb coal, coal lumps, traditional biomass, etc., thereby increasing the reliance on low-grade energy resources and raising the risk of energy poverty. (4) AI has greater negative effects on those who do not have access to energy subsidies and households with poor energy security and stability, lower income and inadequate social security. Besides, its impacts on regions with higher levels of technological development are more prominent. (5) Feasible pathways to mitigate the adverse effects of AI are explored. It is found that improving labor protection can help alleviate its adverse consequences on energy consumption. This paper provides evidence on the impacts of technological disruption from a demand-based perspective. It highlights the need for better policies on energy, social security, income distribution and labor protection to weaken AI's effects on household energy consumption and prevent them from falling into energy poverty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小蘑菇应助xx采纳,获得10
4秒前
情怀应助陈chq采纳,获得100
4秒前
科研通AI2S应助戴祖娴采纳,获得10
5秒前
令狐凝阳发布了新的文献求助10
5秒前
6秒前
SciGPT应助sk夏冰采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
fifteen应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
10秒前
贵金属LiLi完成签到 ,获得积分10
10秒前
dsv完成签到,获得积分10
11秒前
英姑应助海绵宝宝采纳,获得10
11秒前
12秒前
幸福煎蛋完成签到,获得积分10
12秒前
Peyton Why发布了新的文献求助10
12秒前
14秒前
15秒前
Math4396完成签到 ,获得积分10
15秒前
danielbbbb发布了新的文献求助10
17秒前
研友_VZG7GZ应助包容新蕾采纳,获得10
17秒前
Peyton Why完成签到,获得积分10
19秒前
19秒前
20秒前
脑洞疼应助Shutai采纳,获得10
20秒前
阔达的访风应助张磊采纳,获得30
20秒前
三重根发布了新的文献求助10
20秒前
21秒前
Hello应助董小董采纳,获得10
22秒前
sk夏冰发布了新的文献求助10
22秒前
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247541
求助须知:如何正确求助?哪些是违规求助? 2890899
关于积分的说明 8264908
捐赠科研通 2559161
什么是DOI,文献DOI怎么找? 1387839
科研通“疑难数据库(出版商)”最低求助积分说明 650658
邀请新用户注册赠送积分活动 627438