Inter-well reservoir parameter prediction based on LSTM-Attention network and sedimentary microfacies

地质学 沉积岩 储层建模 石油工程 古生物学
作者
Muzhen Zhang,Ailin Jia,Zhengdong Lei
标识
DOI:10.1016/j.geoen.2024.212723
摘要

The essence of predicting inter-well reservoir parameters is to find the distribution pattern of these parameters in three-dimensional space, which is closely related to the distribution of sedimentary microfacies. Existing research on neural network-based prediction of reservoir parameters can be divided into two directions: vertical and horizontal. The former predicts the logging curves of individual wells, while the latter predicts average data points between wells. However, there is a lack of research on prediction methods for logging curves inter-wells within the entire three-dimensional space. This paper aims to incorporate geological conceptual information, such as sedimentary microfacies, into the spatial prediction of reservoir parameters, and to study the prediction method of well-logging curves, taking porosity as an example. The goal is to achieve the effect of obtaining a predicted well-log porosity curve for a designated location in the study area by inputting spatial coordinates and sedimentary microfacies information. The research method combines the Long Short-Term Memory (LSTM) network and Attention Mechanism, uses real logging data for experiments, conducts multi-method comparisons, discusses the impact of sedimentary microfacies and different neural network methods on the prediction effect of inter-well reservoir parameters, and carries out generalization experiments of the method in new areas. The experimental results show that the research method is effective and can achieve the purpose of describing the spatial distribution of reservoir parameters and guiding geological exploration and development work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清梦星河LLL完成签到,获得积分10
刚刚
小羊发布了新的文献求助10
1秒前
英俊的铭应助啦啦啦采纳,获得10
2秒前
2秒前
YYY发布了新的文献求助10
2秒前
2秒前
4秒前
jack1511完成签到,获得积分10
6秒前
1111应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
ED应助科研通管家采纳,获得10
7秒前
1111应助科研通管家采纳,获得10
7秒前
知许解夏应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得30
7秒前
情怀应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得30
7秒前
彭于彦祖应助科研通管家采纳,获得30
7秒前
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
yan完成签到,获得积分10
8秒前
Orange应助小羊采纳,获得50
9秒前
FancyShi发布了新的文献求助10
9秒前
10秒前
nemuruinu完成签到,获得积分10
11秒前
13秒前
Jenny完成签到,获得积分10
14秒前
14秒前
项目多多完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388