Inter-well reservoir parameter prediction based on LSTM-Attention network and sedimentary microfacies

地质学 沉积岩 储层建模 石油工程 古生物学
作者
Muzhen Zhang,Ailin Jia,Zhengdong Lei
标识
DOI:10.1016/j.geoen.2024.212723
摘要

The essence of predicting inter-well reservoir parameters is to find the distribution pattern of these parameters in three-dimensional space, which is closely related to the distribution of sedimentary microfacies. Existing research on neural network-based prediction of reservoir parameters can be divided into two directions: vertical and horizontal. The former predicts the logging curves of individual wells, while the latter predicts average data points between wells. However, there is a lack of research on prediction methods for logging curves inter-wells within the entire three-dimensional space. This paper aims to incorporate geological conceptual information, such as sedimentary microfacies, into the spatial prediction of reservoir parameters, and to study the prediction method of well-logging curves, taking porosity as an example. The goal is to achieve the effect of obtaining a predicted well-log porosity curve for a designated location in the study area by inputting spatial coordinates and sedimentary microfacies information. The research method combines the Long Short-Term Memory (LSTM) network and Attention Mechanism, uses real logging data for experiments, conducts multi-method comparisons, discusses the impact of sedimentary microfacies and different neural network methods on the prediction effect of inter-well reservoir parameters, and carries out generalization experiments of the method in new areas. The experimental results show that the research method is effective and can achieve the purpose of describing the spatial distribution of reservoir parameters and guiding geological exploration and development work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
真实的火车完成签到,获得积分10
刚刚
方东发布了新的文献求助10
刚刚
刚刚
1秒前
孙明浩发布了新的文献求助30
1秒前
梁业松发布了新的文献求助10
1秒前
科研通AI6应助qimingran采纳,获得10
2秒前
所所应助moreorless_zjh采纳,获得10
2秒前
薛wen晶发布了新的文献求助20
2秒前
3秒前
neverlost6发布了新的文献求助10
4秒前
4秒前
Ustinian发布了新的文献求助10
5秒前
嗨喔发布了新的文献求助10
5秒前
张敬轩劝你不要读博关注了科研通微信公众号
5秒前
5秒前
华仔应助多多多采纳,获得10
5秒前
星辰大海应助兔兔要睡觉采纳,获得10
6秒前
6秒前
搜集达人应助洪世贤采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
友好的储发布了新的文献求助10
6秒前
无糖零脂发布了新的文献求助10
6秒前
6秒前
种草匠完成签到,获得积分10
7秒前
qq发布了新的文献求助10
7秒前
伯赏无极发布了新的文献求助10
9秒前
9秒前
超级微笑发布了新的文献求助10
9秒前
9秒前
土豆发布了新的文献求助10
10秒前
NexusExplorer应助无糖零脂采纳,获得10
10秒前
大模型应助neverlost6采纳,获得10
11秒前
11秒前
11秒前
12秒前
JCY完成签到,获得积分10
12秒前
酷波er应助mumahuangshu采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933105
求助须知:如何正确求助?哪些是违规求助? 4201461
关于积分的说明 13052835
捐赠科研通 3975404
什么是DOI,文献DOI怎么找? 2178354
邀请新用户注册赠送积分活动 1194774
关于科研通互助平台的介绍 1106106