Inter-well reservoir parameter prediction based on LSTM-Attention network and sedimentary microfacies

地质学 沉积岩 储层建模 石油工程 古生物学
作者
Muzhen Zhang,Ailin Jia,Zhanxiang Lei
标识
DOI:10.1016/j.geoen.2024.212723
摘要

The essence of predicting inter-well reservoir parameters is to find the distribution pattern of these parameters in three-dimensional space, which is closely related to the distribution of sedimentary microfacies. Existing research on neural network-based prediction of reservoir parameters can be divided into two directions: vertical and horizontal. The former predicts the logging curves of individual wells, while the latter predicts average data points between wells. However, there is a lack of research on prediction methods for logging curves inter-wells within the entire three-dimensional space. This paper aims to incorporate geological conceptual information, such as sedimentary microfacies, into the spatial prediction of reservoir parameters, and to study the prediction method of well-logging curves, taking porosity as an example. The goal is to achieve the effect of obtaining a predicted well-log porosity curve for a designated location in the study area by inputting spatial coordinates and sedimentary microfacies information. The research method combines the Long Short-Term Memory (LSTM) network and Attention Mechanism, uses real logging data for experiments, conducts multi-method comparisons, discusses the impact of sedimentary microfacies and different neural network methods on the prediction effect of inter-well reservoir parameters, and carries out generalization experiments of the method in new areas. The experimental results show that the research method is effective and can achieve the purpose of describing the spatial distribution of reservoir parameters and guiding geological exploration and development work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
LaTeXer应助科研通管家采纳,获得50
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
LaTeXer应助科研通管家采纳,获得50
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
易点邦应助科研通管家采纳,获得100
2秒前
wanci应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
xzy998应助日笙采纳,获得10
5秒前
孙国扬完成签到 ,获得积分10
5秒前
酷波er应助留胡子的迎梦采纳,获得10
7秒前
7秒前
一一发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
huhuhu发布了新的文献求助10
9秒前
LYD发布了新的文献求助10
11秒前
罗小罗同学完成签到,获得积分10
12秒前
啊啊啊啊啊啊完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736751
求助须知:如何正确求助?哪些是违规求助? 5368102
关于积分的说明 15333909
捐赠科研通 4880517
什么是DOI,文献DOI怎么找? 2622883
邀请新用户注册赠送积分活动 1571780
关于科研通互助平台的介绍 1528601