Inter-well reservoir parameter prediction based on LSTM-Attention network and sedimentary microfacies

地质学 沉积岩 储层建模 石油工程 古生物学
作者
Muzhen Zhang,Ailin Jia,Zhengdong Lei
标识
DOI:10.1016/j.geoen.2024.212723
摘要

The essence of predicting inter-well reservoir parameters is to find the distribution pattern of these parameters in three-dimensional space, which is closely related to the distribution of sedimentary microfacies. Existing research on neural network-based prediction of reservoir parameters can be divided into two directions: vertical and horizontal. The former predicts the logging curves of individual wells, while the latter predicts average data points between wells. However, there is a lack of research on prediction methods for logging curves inter-wells within the entire three-dimensional space. This paper aims to incorporate geological conceptual information, such as sedimentary microfacies, into the spatial prediction of reservoir parameters, and to study the prediction method of well-logging curves, taking porosity as an example. The goal is to achieve the effect of obtaining a predicted well-log porosity curve for a designated location in the study area by inputting spatial coordinates and sedimentary microfacies information. The research method combines the Long Short-Term Memory (LSTM) network and Attention Mechanism, uses real logging data for experiments, conducts multi-method comparisons, discusses the impact of sedimentary microfacies and different neural network methods on the prediction effect of inter-well reservoir parameters, and carries out generalization experiments of the method in new areas. The experimental results show that the research method is effective and can achieve the purpose of describing the spatial distribution of reservoir parameters and guiding geological exploration and development work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的夏岚完成签到,获得积分20
1秒前
Jasper应助等等采纳,获得10
1秒前
2秒前
852应助Cai采纳,获得10
3秒前
hajy完成签到 ,获得积分10
3秒前
陈陈陈完成签到,获得积分10
3秒前
陌小石完成签到 ,获得积分10
3秒前
合适怡完成签到,获得积分10
3秒前
4秒前
4秒前
顺利研兔子完成签到,获得积分10
5秒前
5秒前
5秒前
大雄发布了新的文献求助10
6秒前
6秒前
7秒前
古今奇观完成签到 ,获得积分10
7秒前
April完成签到,获得积分0
9秒前
啦啦完成签到 ,获得积分10
9秒前
我要吃饭发布了新的文献求助10
10秒前
mi1486325完成签到,获得积分10
10秒前
基金中中中完成签到,获得积分10
10秒前
summer夏完成签到,获得积分10
10秒前
11秒前
木子酒发布了新的文献求助10
12秒前
12秒前
67完成签到,获得积分10
14秒前
15秒前
真是无奈耶完成签到,获得积分10
15秒前
元谷雪发布了新的文献求助10
15秒前
15秒前
喜之郎完成签到,获得积分10
17秒前
17秒前
17秒前
拼搏的飞薇完成签到,获得积分10
18秒前
刘畅完成签到 ,获得积分10
18秒前
害羞龙猫完成签到 ,获得积分10
19秒前
20秒前
等等发布了新的文献求助10
22秒前
JamesPei应助我要吃饭采纳,获得10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162769
求助须知:如何正确求助?哪些是违规求助? 2813685
关于积分的说明 7901577
捐赠科研通 2473296
什么是DOI,文献DOI怎么找? 1316715
科研通“疑难数据库(出版商)”最低求助积分说明 631516
版权声明 602175