A branch-and-cut algorithm for scheduling train platoons in urban rail networks

计算机科学 调度(生产过程) 算法 工程类 运营管理
作者
Simin Chai,Jiateng Yin,Andrea D’Ariano,Ronghui Liu,Lixing Yang,Tao Tang
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:181: 102891-102891 被引量:4
标识
DOI:10.1016/j.trb.2024.102891
摘要

With the emerging of virtual coupling technologies, the concept of train platoon, where different vehicles can be flexibly and dynamically grouped or decoupled, has become a hot research topic. In this study, we investigate the scheduling of train platoons for urban rail networks with time-dependent demand to mitigate passenger inconvenience. We propose a mixed-integer linear programming (MILP) model that simultaneously optimizes the train-platoon (de)coupling strategies, arrival/departure times at each station, and the running orders of trains, while considering limited rolling stock resources at the depots and the safety of trains at cross-line zones. To tackle computational challenges in real-world instances, we develop a customized branch-and-cut solution algorithm, based on the analysis of mathematical properties of our MILP model, to generate (near-)optimal solutions more efficiently. In particular, we propose three sets of valid inequalities that are dynamically added to the model to strengthen the linear relaxation bounds at each node. We also design a customized branching rule in the search tree by imposing to branch on the key decision variables regarding the train orders at the cross-line zones. Real-world case studies based on the operational data of Beijing metro network are conducted to verify the effectiveness of our approach. The results demonstrate that our branch-and-cut-based approach evidently outperforms commercial solvers in terms of solution quality and computational efficiency. Compared to the current train schedule with fixed compositions in practice, our approach with flexible coupling strategies can reduce the passenger dissatisfaction by over 15%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuyudelan完成签到,获得积分10
刚刚
zstyry9998完成签到,获得积分10
2秒前
RH发布了新的文献求助10
2秒前
冷傲迎梦发布了新的文献求助10
2秒前
4秒前
weiv完成签到,获得积分10
6秒前
Teslwang完成签到,获得积分10
6秒前
6秒前
6秒前
zhangzhen发布了新的文献求助10
6秒前
英姑应助彬彬采纳,获得10
7秒前
传奇3应助maomao采纳,获得10
9秒前
稀罕你发布了新的文献求助10
10秒前
研友_VZG7GZ应助毛豆爸爸采纳,获得10
10秒前
naonao完成签到,获得积分20
10秒前
摆烂的实验室打工人完成签到,获得积分10
10秒前
Jenny发布了新的文献求助50
12秒前
13秒前
hehe完成签到,获得积分20
13秒前
naonao发布了新的文献求助10
14秒前
Glufo完成签到,获得积分10
14秒前
15秒前
qqqqqq发布了新的文献求助10
16秒前
忘羡222发布了新的文献求助30
16秒前
紫菜发布了新的文献求助10
18秒前
22秒前
22秒前
独特亦旋完成签到,获得积分20
23秒前
今后应助qqqqqq采纳,获得10
24秒前
小马甲应助飞羽采纳,获得10
24秒前
星辰大海应助西内!卡Q因采纳,获得10
25秒前
25秒前
彬彬发布了新的文献求助10
26秒前
太叔捕完成签到,获得积分10
26秒前
高磊发布了新的文献求助10
27秒前
RH完成签到,获得积分10
27秒前
zhangzhen完成签到,获得积分10
27秒前
28秒前
科研通AI2S应助zfzf0422采纳,获得10
30秒前
Wendy1204发布了新的文献求助10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824