已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A branch-and-cut algorithm for scheduling train platoons in urban rail networks

火车 计算机科学 调度(生产过程) 整数规划 数学优化 分界 铁路货物运输 算法 地铁列车时刻表 分支和切割 运筹学 工程类 运输工程 数学 操作系统 地理 人工智能 控制(管理) 地图学
作者
Simin Chai,Jiateng Yin,Andrea D’Ariano,Ronghui Liu,Lixing Yang,Tao Tang
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:181: 102891-102891 被引量:24
标识
DOI:10.1016/j.trb.2024.102891
摘要

With the emerging of virtual coupling technologies, the concept of train platoon, where different vehicles can be flexibly and dynamically grouped or decoupled, has become a hot research topic. In this study, we investigate the scheduling of train platoons for urban rail networks with time-dependent demand to mitigate passenger inconvenience. We propose a mixed-integer linear programming (MILP) model that simultaneously optimizes the train-platoon (de)coupling strategies, arrival/departure times at each station, and the running orders of trains, while considering limited rolling stock resources at the depots and the safety of trains at cross-line zones. To tackle computational challenges in real-world instances, we develop a customized branch-and-cut solution algorithm, based on the analysis of mathematical properties of our MILP model, to generate (near-)optimal solutions more efficiently. In particular, we propose three sets of valid inequalities that are dynamically added to the model to strengthen the linear relaxation bounds at each node. We also design a customized branching rule in the search tree by imposing to branch on the key decision variables regarding the train orders at the cross-line zones. Real-world case studies based on the operational data of Beijing metro network are conducted to verify the effectiveness of our approach. The results demonstrate that our branch-and-cut-based approach evidently outperforms commercial solvers in terms of solution quality and computational efficiency. Compared to the current train schedule with fixed compositions in practice, our approach with flexible coupling strategies can reduce the passenger dissatisfaction by over 15%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leo0531完成签到 ,获得积分10
3秒前
jane123发布了新的文献求助10
4秒前
4秒前
小凯完成签到 ,获得积分0
6秒前
曾诗婷完成签到 ,获得积分10
8秒前
8秒前
wukong完成签到,获得积分10
9秒前
10秒前
万能图书馆应助zzz采纳,获得10
11秒前
14秒前
潮鸣完成签到 ,获得积分10
14秒前
17秒前
谢绍博发布了新的文献求助10
19秒前
白蒲桃完成签到 ,获得积分10
22秒前
典雅长颈鹿完成签到,获得积分10
24秒前
24秒前
MiaJ完成签到 ,获得积分10
25秒前
27秒前
领导范儿应助优雅千秋采纳,获得10
28秒前
yunshui发布了新的文献求助10
31秒前
小胖子完成签到 ,获得积分10
31秒前
31秒前
kentonchow应助科研通管家采纳,获得50
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
32秒前
浮游应助科研通管家采纳,获得10
32秒前
赘婿应助科研通管家采纳,获得10
32秒前
32秒前
古炮完成签到 ,获得积分10
32秒前
36秒前
Zilch发布了新的文献求助10
37秒前
大个应助哈哈王子采纳,获得10
37秒前
39秒前
桔梗完成签到 ,获得积分10
39秒前
顾矜应助谢绍博采纳,获得10
39秒前
科目三应助ffjx采纳,获得10
40秒前
柠栀发布了新的文献求助10
41秒前
为你钟情完成签到 ,获得积分10
42秒前
田様应助xio采纳,获得30
43秒前
可爱以冬发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482112
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388421
捐赠科研通 4511951
什么是DOI,文献DOI怎么找? 2472648
邀请新用户注册赠送积分活动 1458905
关于科研通互助平台的介绍 1432309