重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A branch-and-cut algorithm for scheduling train platoons in urban rail networks

火车 计算机科学 调度(生产过程) 整数规划 数学优化 分界 铁路货物运输 算法 地铁列车时刻表 分支和切割 运筹学 工程类 运输工程 数学 人工智能 地理 操作系统 地图学 控制(管理)
作者
Simin Chai,Jiateng Yin,Andrea D’Ariano,Ronghui Liu,Lixing Yang,Tao Tang
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:181: 102891-102891 被引量:24
标识
DOI:10.1016/j.trb.2024.102891
摘要

With the emerging of virtual coupling technologies, the concept of train platoon, where different vehicles can be flexibly and dynamically grouped or decoupled, has become a hot research topic. In this study, we investigate the scheduling of train platoons for urban rail networks with time-dependent demand to mitigate passenger inconvenience. We propose a mixed-integer linear programming (MILP) model that simultaneously optimizes the train-platoon (de)coupling strategies, arrival/departure times at each station, and the running orders of trains, while considering limited rolling stock resources at the depots and the safety of trains at cross-line zones. To tackle computational challenges in real-world instances, we develop a customized branch-and-cut solution algorithm, based on the analysis of mathematical properties of our MILP model, to generate (near-)optimal solutions more efficiently. In particular, we propose three sets of valid inequalities that are dynamically added to the model to strengthen the linear relaxation bounds at each node. We also design a customized branching rule in the search tree by imposing to branch on the key decision variables regarding the train orders at the cross-line zones. Real-world case studies based on the operational data of Beijing metro network are conducted to verify the effectiveness of our approach. The results demonstrate that our branch-and-cut-based approach evidently outperforms commercial solvers in terms of solution quality and computational efficiency. Compared to the current train schedule with fixed compositions in practice, our approach with flexible coupling strategies can reduce the passenger dissatisfaction by over 15%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
半田清舟完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
锦鲤完成签到 ,获得积分10
2秒前
zyg发布了新的文献求助10
2秒前
wxr发布了新的文献求助10
2秒前
2秒前
3秒前
wen完成签到,获得积分10
4秒前
Dream7发布了新的文献求助80
4秒前
君衡完成签到 ,获得积分10
4秒前
Ava应助梨炒栗子采纳,获得10
4秒前
5秒前
七柒完成签到,获得积分10
5秒前
5秒前
pipi关注了科研通微信公众号
5秒前
无花果应助lll采纳,获得10
5秒前
半田清舟发布了新的文献求助10
6秒前
Draeck发布了新的文献求助10
7秒前
GC_AIBio发布了新的文献求助10
7秒前
VicTarZ完成签到,获得积分10
8秒前
Hello应助房明锴采纳,获得10
9秒前
小蘑菇应助苹果采纳,获得10
9秒前
chuanyongcui发布了新的文献求助10
9秒前
10秒前
10秒前
Sandy发布了新的文献求助10
10秒前
wanci应助dongdadada采纳,获得10
10秒前
FODEN47完成签到 ,获得积分10
11秒前
11秒前
11秒前
MUAN完成签到,获得积分10
12秒前
酷酷若风发布了新的文献求助30
12秒前
777完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
onlywei完成签到,获得积分10
14秒前
科研小菜鸟完成签到,获得积分20
15秒前
超级的梦槐完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516