A branch-and-cut algorithm for scheduling train platoons in urban rail networks

火车 计算机科学 调度(生产过程) 整数规划 数学优化 分界 铁路货物运输 算法 地铁列车时刻表 分支和切割 运筹学 工程类 运输工程 数学 人工智能 地理 操作系统 地图学 控制(管理)
作者
Simin Chai,Jiateng Yin,Andrea D’Ariano,Ronghui Liu,Lixing Yang,Tao Tang
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:181: 102891-102891 被引量:24
标识
DOI:10.1016/j.trb.2024.102891
摘要

With the emerging of virtual coupling technologies, the concept of train platoon, where different vehicles can be flexibly and dynamically grouped or decoupled, has become a hot research topic. In this study, we investigate the scheduling of train platoons for urban rail networks with time-dependent demand to mitigate passenger inconvenience. We propose a mixed-integer linear programming (MILP) model that simultaneously optimizes the train-platoon (de)coupling strategies, arrival/departure times at each station, and the running orders of trains, while considering limited rolling stock resources at the depots and the safety of trains at cross-line zones. To tackle computational challenges in real-world instances, we develop a customized branch-and-cut solution algorithm, based on the analysis of mathematical properties of our MILP model, to generate (near-)optimal solutions more efficiently. In particular, we propose three sets of valid inequalities that are dynamically added to the model to strengthen the linear relaxation bounds at each node. We also design a customized branching rule in the search tree by imposing to branch on the key decision variables regarding the train orders at the cross-line zones. Real-world case studies based on the operational data of Beijing metro network are conducted to verify the effectiveness of our approach. The results demonstrate that our branch-and-cut-based approach evidently outperforms commercial solvers in terms of solution quality and computational efficiency. Compared to the current train schedule with fixed compositions in practice, our approach with flexible coupling strategies can reduce the passenger dissatisfaction by over 15%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
gapper完成签到 ,获得积分10
1秒前
2秒前
3秒前
Sean发布了新的文献求助10
4秒前
Jasper应助明亮的颖采纳,获得30
4秒前
望仔完成签到,获得积分10
4秒前
Ann完成签到,获得积分10
4秒前
5秒前
殷勤的紫槐应助wipmzxu采纳,获得200
5秒前
LIU完成签到 ,获得积分10
7秒前
myc发布了新的文献求助10
8秒前
8秒前
8秒前
泠漓完成签到 ,获得积分10
9秒前
王尧完成签到,获得积分10
10秒前
可靠半青完成签到 ,获得积分10
11秒前
科研通AI6应助tejing1158采纳,获得10
11秒前
12秒前
jia完成签到 ,获得积分10
12秒前
明亮的颖发布了新的文献求助30
13秒前
rslysywd完成签到,获得积分10
13秒前
13秒前
现代的bb完成签到,获得积分10
15秒前
xu1227发布了新的文献求助10
16秒前
大锤完成签到,获得积分20
16秒前
zz发布了新的文献求助10
18秒前
DXB完成签到 ,获得积分10
18秒前
小蘑菇应助明亮的颖采纳,获得10
19秒前
jx314发布了新的文献求助10
20秒前
21秒前
伶俐的铁身完成签到,获得积分10
21秒前
aub发布了新的文献求助10
21秒前
情怀应助王贺帅采纳,获得10
22秒前
唠叨的元槐完成签到,获得积分10
23秒前
vv1223完成签到,获得积分10
23秒前
24秒前
王思聪完成签到 ,获得积分10
25秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379532
求助须知:如何正确求助?哪些是违规求助? 4503848
关于积分的说明 14016757
捐赠科研通 4412672
什么是DOI,文献DOI怎么找? 2423885
邀请新用户注册赠送积分活动 1416773
关于科研通互助平台的介绍 1394345