A branch-and-cut algorithm for scheduling train platoons in urban rail networks

计算机科学 调度(生产过程) 算法 工程类 运营管理
作者
Simin Chai,Jiateng Yin,Andrea D’Ariano,Ronghui Liu,Lixing Yang,Tao Tang
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:181: 102891-102891 被引量:4
标识
DOI:10.1016/j.trb.2024.102891
摘要

With the emerging of virtual coupling technologies, the concept of train platoon, where different vehicles can be flexibly and dynamically grouped or decoupled, has become a hot research topic. In this study, we investigate the scheduling of train platoons for urban rail networks with time-dependent demand to mitigate passenger inconvenience. We propose a mixed-integer linear programming (MILP) model that simultaneously optimizes the train-platoon (de)coupling strategies, arrival/departure times at each station, and the running orders of trains, while considering limited rolling stock resources at the depots and the safety of trains at cross-line zones. To tackle computational challenges in real-world instances, we develop a customized branch-and-cut solution algorithm, based on the analysis of mathematical properties of our MILP model, to generate (near-)optimal solutions more efficiently. In particular, we propose three sets of valid inequalities that are dynamically added to the model to strengthen the linear relaxation bounds at each node. We also design a customized branching rule in the search tree by imposing to branch on the key decision variables regarding the train orders at the cross-line zones. Real-world case studies based on the operational data of Beijing metro network are conducted to verify the effectiveness of our approach. The results demonstrate that our branch-and-cut-based approach evidently outperforms commercial solvers in terms of solution quality and computational efficiency. Compared to the current train schedule with fixed compositions in practice, our approach with flexible coupling strategies can reduce the passenger dissatisfaction by over 15%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一支布洛芬完成签到,获得积分20
1秒前
大侠发布了新的文献求助10
4秒前
4秒前
4秒前
鹤九发布了新的文献求助10
4秒前
白子双发布了新的文献求助10
5秒前
觉皇发布了新的文献求助10
5秒前
6秒前
8秒前
asdfghjkl发布了新的文献求助10
9秒前
共享精神应助fu采纳,获得10
9秒前
淡淡大白完成签到 ,获得积分10
9秒前
博士后完成签到 ,获得积分10
10秒前
10秒前
10秒前
yyf发布了新的文献求助10
10秒前
鹤九完成签到,获得积分10
10秒前
玉玉发布了新的文献求助10
11秒前
13秒前
ghghgh发布了新的文献求助10
13秒前
13秒前
加菲丰丰完成签到,获得积分0
14秒前
orixero应助单耳元采纳,获得10
15秒前
英姑应助科研通管家采纳,获得200
15秒前
bkagyin应助科研通管家采纳,获得15
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得20
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
hx发布了新的文献求助10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
kecheng应助科研通管家采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452