Multi-modal cascade detection of pipeline defects based on deep transfer metric learning

级联 管道(软件) 情态动词 公制(单位) 判别式 计算机科学 人工智能 特征提取 漏磁 特征(语言学) 模式识别(心理学) 机器学习 工程类 材料科学 机械工程 化学工程 哲学 语言学 运营管理 高分子化学 磁铁
作者
Boxuan Gao,Hong Zhao,Xingyuan Miao
出处
期刊:Engineering Failure Analysis [Elsevier BV]
卷期号:160: 108216-108216 被引量:4
标识
DOI:10.1016/j.engfailanal.2024.108216
摘要

Pipeline defect detection technology plays an important role in pipeline maintenance and transportation. Defect detection based on machine learning methods has gained considerable attention in practical engineering. However, it is still challenging to provide an accurate diagnosis and defect size estimation due to the poor inter-class discriminability and intra-class concentration. Such as, it is difficult to distinguish the hole defect, which is similar in appearance to dent defect. For this purpose, a multi-modal cascade detection framework of pipeline defects based on Deep Transfer Metric Learning (DTML) is proposed for defect recognition and defect size estimation, which integrates with machine vision and Magnetic Flux Leakage (MFL). DTML model based on ResNet50 is designed to extract discriminative features from defect images obtained through vision sensor. To enhance the features of MFL signals, Gramian Angular Field (GAF) is used to achieve the two-dimensional feature extraction. After that, three ResNet101 models are developed to estimate the pipeline defect size of different types. The experimental results demonstrate that the proposed multi-modal cascade detection framework performs well in defect recognition and defect size estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Serena完成签到,获得积分20
1秒前
zhao完成签到,获得积分10
1秒前
陈琳完成签到,获得积分10
2秒前
Colin_chen完成签到,获得积分10
2秒前
之以发布了新的文献求助10
3秒前
洋山芋完成签到,获得积分10
3秒前
ferritin完成签到 ,获得积分10
3秒前
haoyunlai完成签到,获得积分10
3秒前
彩虹天堂完成签到,获得积分10
3秒前
decademe完成签到,获得积分10
4秒前
4秒前
l六分之一完成签到,获得积分10
4秒前
精明妙之完成签到,获得积分10
5秒前
研友_LX7478完成签到,获得积分10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
iNk应助科研通管家采纳,获得20
6秒前
约克宁发布了新的文献求助10
6秒前
Akim应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
zy_完成签到,获得积分10
7秒前
共享精神应助老A采纳,获得30
7秒前
7秒前
安慕希完成签到,获得积分10
8秒前
8秒前
9秒前
x笑一发布了新的文献求助10
10秒前
宁阿霜完成签到,获得积分10
10秒前
Cxxxx完成签到 ,获得积分10
10秒前
ttc完成签到,获得积分10
10秒前
11秒前
saaa完成签到,获得积分10
11秒前
11秒前
约克宁完成签到,获得积分10
12秒前
琉璃岁月发布了新的文献求助10
12秒前
12秒前
13秒前
谢序泽完成签到,获得积分10
13秒前
称心幼荷发布了新的文献求助30
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874