Data analytics approach for short- and long-term mortality prediction following acute non-ST-elevation myocardial infarction (NSTEMI) and Unstable Angina (UA) in Asians

不稳定型心绞痛 心肌梗塞 弗雷明翰风险评分 医学 内科学 朴素贝叶斯分类器 人口 随机森林 蒂米 机器学习 支持向量机 人工智能 心脏病学 计算机科学 疾病 经皮冠状动脉介入治疗 环境卫生
作者
Sazzli Kasim,Putri Nur Fatin Amir Rudin,Sorayya Malek,Muhammad Firdaus Aziz,Wan Azman Wan Ahmad,Khairul Shafiq Ibrahim,Muhammad Hanis Muhmad Hamidi,Raja Ezman Raja Shariff,Alan Yean Yip Fong,Cheen Song
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (2): e0298036-e0298036 被引量:6
标识
DOI:10.1371/journal.pone.0298036
摘要

Background Traditional risk assessment tools often lack accuracy when predicting the short- and long-term mortality following a non-ST-segment elevation myocardial infarction (NSTEMI) or Unstable Angina (UA) in specific population. Objective To employ machine learning (ML) and stacked ensemble learning (EL) methods in predicting short- and long-term mortality in Asian patients diagnosed with NSTEMI/UA and to identify the associated features, subsequently evaluating these findings against established risk scores. Methods We analyzed data from the National Cardiovascular Disease Database for Malaysia (2006–2019), representing a diverse NSTEMI/UA Asian cohort. Algorithm development utilized in-hospital records of 9,518 patients, 30-day data from 7,133 patients, and 1-year data from 7,031 patients. This study utilized 39 features, including demographic, cardiovascular risk, medication, and clinical features. In the development of the stacked EL model, four base learner algorithms were employed: eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), Naive Bayes (NB), and Random Forest (RF), with the Generalized Linear Model (GLM) serving as the meta learner. Significant features were chosen and ranked using ML feature importance with backward elimination. The predictive performance of the algorithms was assessed using the area under the curve (AUC) as a metric. Validation of the algorithms was conducted against the TIMI for NSTEMI/UA using a separate validation dataset, and the net reclassification index (NRI) was subsequently determined. Results Using both complete and reduced features, the algorithm performance achieved an AUC ranging from 0.73 to 0.89. The top-performing ML algorithm consistently surpassed the TIMI risk score for in-hospital, 30-day, and 1-year predictions (with AUC values of 0.88, 0.88, and 0.81, respectively, all p < 0.001), while the TIMI scores registered significantly lower at 0.55, 0.54, and 0.61. This suggests the TIMI score tends to underestimate patient mortality risk. The net reclassification index (NRI) of the best ML algorithm for NSTEMI/UA patients across these periods yielded an NRI between 40–60% (p < 0.001) relative to the TIMI NSTEMI/UA risk score. Key features identified for both short- and long-term mortality included age, Killip class, heart rate, and Low-Molecular-Weight Heparin (LMWH) administration. Conclusions In a broad multi-ethnic population, ML approaches outperformed conventional TIMI scoring in classifying patients with NSTEMI and UA. ML allows for the precise identification of unique characteristics within individual Asian populations, improving the accuracy of mortality predictions. Continuous development, testing, and validation of these ML algorithms holds the promise of enhanced risk stratification, thereby revolutionizing future management strategies and patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
希望天下0贩的0应助BLUZ采纳,获得10
1秒前
2354发布了新的文献求助10
2秒前
红绿灯的黄完成签到,获得积分10
2秒前
夏蓉发布了新的文献求助30
3秒前
4秒前
4秒前
song发布了新的文献求助30
5秒前
5秒前
科研通AI5应助chai采纳,获得10
6秒前
渝风正气发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
晨曦微露完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
10秒前
腼腆的恶天完成签到,获得积分10
11秒前
111发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
周子完成签到,获得积分10
15秒前
15秒前
阿rain发布了新的文献求助10
15秒前
16秒前
16秒前
shine0king完成签到,获得积分10
17秒前
17秒前
研友_VZG7GZ应助土土b采纳,获得10
18秒前
Sephirex发布了新的文献求助10
18秒前
19秒前
fy发布了新的文献求助10
19秒前
21秒前
阿萨大大发布了新的文献求助30
21秒前
22秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769651
求助须知:如何正确求助?哪些是违规求助? 3314720
关于积分的说明 10173463
捐赠科研通 3030075
什么是DOI,文献DOI怎么找? 1662585
邀请新用户注册赠送积分活动 795040
科研通“疑难数据库(出版商)”最低求助积分说明 756519