Deep LSTM and LSTM-Attention Q-learning based reinforcement learning in oil and gas sector prediction

强化学习 深度学习 马尔可夫决策过程 人工智能 计算机科学 投资决策 机器学习 短时记忆 库存(枪支) 股票市场 背景(考古学) 马尔可夫过程 循环神经网络 人工神经网络 经济 行为经济学 财务 工程类 统计 生物 古生物学 机械工程 数学
作者
David Opeoluwa Oyewola,Sulaiman Awwal Akinwunmi,Temidayo Oluwatosin Omotehinwa
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:284: 111290-111290 被引量:30
标识
DOI:10.1016/j.knosys.2023.111290
摘要

Accurate prediction of stock market trends and movements holds great significance in the financial industry as it enables investors, traders, and decision-makers to make informed choices and optimize their investment strategies. In the context of the oil and gas sector, where stock prices are influenced by complex market dynamics and various external factors, reliable predictions are essential for effective decision-making and risk management. This study proposes Deep Long Short-Term Memory Q-Learning (DLQL) and Deep Long Short-Term Memory Attention Q-Learning (DLAQL) models and state-of-the-art Long Short-Term Memory (LSTM) for predicting stock prices in the oil and gas sector. The study utilizes historical stock price data of Cenovus Energy Inc. (CVE), MPLX LP (MPLX), Cheniere Energy Inc. (LNG), and Suncor Energy Inc. (SU) to create and validate these models. The research employs the Markov Decision Process (MDP) framework, a widely-used reinforcement learning technique, to train the deep LSTM Q-Learning and deep LSTM Attention Q-Learning models. This framework allows the models to learn optimal policies based on historical data, enabling them to make accurate predictions and adapt to changing market conditions. The findings of this study reveal that the proposed DLQL and DLAQL perform excellently well in terms of prediction accuracy in the oil and gas sector. The inclusion of attention mechanisms in the DLAQL model further enhances its performance by allowing it to focus on important features and capture relevant information. The results of this research underscore the potential of deep LSTM Q-Learning and deep LSTM Attention Q-Learning models in stock market prediction within the oil and gas sector. The application of these models can lead to improved decision-making, enhanced risk management, and increased profitability for market participants. Further exploration and refinement of these models, along with the incorporation of additional variables and market indicators, can contribute to the development of more sophisticated prediction models in the future. Overall, this study contributes to the advancement of stock market prediction techniques, specifically in the oil and gas sector, by introducing and evaluating the efficacy of deep LSTM Q-Learning and deep LSTM Attention Q-Learning models. The findings highlight the importance of accurate stock market predictions and demonstrate the potential benefits of leveraging these models within the MDP framework to support decision-making and risk management in the dynamic and competitive oil and gas industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
筱筱完成签到,获得积分10
1秒前
CC完成签到,获得积分10
1秒前
xy发布了新的文献求助10
1秒前
Connor完成签到,获得积分10
2秒前
ZXT关闭了ZXT文献求助
2秒前
Lau完成签到,获得积分10
2秒前
somous完成签到,获得积分10
2秒前
JiaY完成签到,获得积分10
2秒前
loga80完成签到,获得积分0
2秒前
扶苏发布了新的文献求助10
3秒前
3秒前
lwl666完成签到,获得积分10
3秒前
4秒前
sxx完成签到,获得积分10
4秒前
科研野狗完成签到 ,获得积分10
4秒前
佳语妍说完成签到,获得积分10
4秒前
贾潮雨发布了新的文献求助10
5秒前
燕子归来完成签到,获得积分10
5秒前
Owen应助三寿采纳,获得10
5秒前
我还不困完成签到,获得积分10
5秒前
7秒前
清脆糖豆完成签到,获得积分10
8秒前
搞怪莫茗应助汶溢采纳,获得10
8秒前
yznfly应助平常囧采纳,获得30
8秒前
彭于彦祖应助luowenbo采纳,获得50
9秒前
wu8577应助lt采纳,获得10
9秒前
充电宝应助殷先生采纳,获得10
9秒前
恪心发布了新的文献求助10
9秒前
smileriver完成签到,获得积分10
9秒前
10秒前
11秒前
溪水发布了新的文献求助30
12秒前
哎哟可爱完成签到,获得积分10
12秒前
思念是什么味道完成签到,获得积分10
12秒前
扶苏完成签到,获得积分10
12秒前
端庄的连碧完成签到 ,获得积分10
13秒前
谦让新竹完成签到,获得积分10
13秒前
labxgr发布了新的文献求助10
14秒前
void1999发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957288
求助须知:如何正确求助?哪些是违规求助? 3503340
关于积分的说明 11113191
捐赠科研通 3234594
什么是DOI,文献DOI怎么找? 1787911
邀请新用户注册赠送积分活动 870830
科研通“疑难数据库(出版商)”最低求助积分说明 802349