Deep LSTM and LSTM-Attention Q-learning based reinforcement learning in oil and gas sector prediction

强化学习 深度学习 马尔可夫决策过程 人工智能 计算机科学 投资决策 机器学习 短时记忆 库存(枪支) 股票市场 背景(考古学) 马尔可夫过程 循环神经网络 人工神经网络 经济 行为经济学 财务 工程类 统计 生物 古生物学 机械工程 数学
作者
David Opeoluwa Oyewola,Sulaiman Awwal Akinwunmi,Temidayo Oluwatosin Omotehinwa
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:284: 111290-111290 被引量:2
标识
DOI:10.1016/j.knosys.2023.111290
摘要

Accurate prediction of stock market trends and movements holds great significance in the financial industry as it enables investors, traders, and decision-makers to make informed choices and optimize their investment strategies. In the context of the oil and gas sector, where stock prices are influenced by complex market dynamics and various external factors, reliable predictions are essential for effective decision-making and risk management. This study proposes Deep Long Short-Term Memory Q-Learning (DLQL) and Deep Long Short-Term Memory Attention Q-Learning (DLAQL) models and state-of-the-art Long Short-Term Memory (LSTM) for predicting stock prices in the oil and gas sector. The study utilizes historical stock price data of Cenovus Energy Inc. (CVE), MPLX LP (MPLX), Cheniere Energy Inc. (LNG), and Suncor Energy Inc. (SU) to create and validate these models. The research employs the Markov Decision Process (MDP) framework, a widely-used reinforcement learning technique, to train the deep LSTM Q-Learning and deep LSTM Attention Q-Learning models. This framework allows the models to learn optimal policies based on historical data, enabling them to make accurate predictions and adapt to changing market conditions. The findings of this study reveal that the proposed DLQL and DLAQL perform excellently well in terms of prediction accuracy in the oil and gas sector. The inclusion of attention mechanisms in the DLAQL model further enhances its performance by allowing it to focus on important features and capture relevant information. The results of this research underscore the potential of deep LSTM Q-Learning and deep LSTM Attention Q-Learning models in stock market prediction within the oil and gas sector. The application of these models can lead to improved decision-making, enhanced risk management, and increased profitability for market participants. Further exploration and refinement of these models, along with the incorporation of additional variables and market indicators, can contribute to the development of more sophisticated prediction models in the future. Overall, this study contributes to the advancement of stock market prediction techniques, specifically in the oil and gas sector, by introducing and evaluating the efficacy of deep LSTM Q-Learning and deep LSTM Attention Q-Learning models. The findings highlight the importance of accurate stock market predictions and demonstrate the potential benefits of leveraging these models within the MDP framework to support decision-making and risk management in the dynamic and competitive oil and gas industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dandelionshun完成签到,获得积分10
3秒前
ZhangYunxuan完成签到,获得积分10
3秒前
Maggie完成签到 ,获得积分10
3秒前
团结友爱完成签到 ,获得积分10
3秒前
淡定小白菜完成签到,获得积分10
5秒前
darmy完成签到,获得积分10
5秒前
quanjia完成签到,获得积分10
8秒前
赵小超完成签到,获得积分10
11秒前
wangechun完成签到,获得积分10
12秒前
Lucas应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
Raymond应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
赵小超发布了新的文献求助10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
medxyy完成签到,获得积分10
16秒前
科研通AI2S应助wangechun采纳,获得10
19秒前
ding应助jeff采纳,获得20
20秒前
甜甜发布了新的文献求助10
22秒前
华仔应助隐形之玉采纳,获得10
22秒前
22秒前
23秒前
虎牛发布了新的文献求助10
27秒前
diode完成签到,获得积分10
27秒前
陈淑玲完成签到,获得积分10
28秒前
28秒前
叶孤城完成签到,获得积分20
29秒前
领导范儿应助wangayting采纳,获得30
29秒前
谦让小咖啡完成签到 ,获得积分10
32秒前
33秒前
任性的傲柏完成签到,获得积分10
35秒前
SciGPT应助bestbanana采纳,获得10
37秒前
张可完成签到 ,获得积分10
38秒前
额尔其子发布了新的文献求助10
40秒前
40秒前
40秒前
科研通AI2S应助路痴采纳,获得10
40秒前
小邓顺利毕业完成签到,获得积分10
41秒前
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023