Deep LSTM and LSTM-Attention Q-learning based reinforcement learning in oil and gas sector prediction

强化学习 深度学习 马尔可夫决策过程 人工智能 计算机科学 投资决策 机器学习 短时记忆 库存(枪支) 股票市场 背景(考古学) 马尔可夫过程 循环神经网络 人工神经网络 经济 行为经济学 财务 工程类 统计 生物 古生物学 机械工程 数学
作者
David Opeoluwa Oyewola,Sulaiman Awwal Akinwunmi,Temidayo Oluwatosin Omotehinwa
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:284: 111290-111290 被引量:14
标识
DOI:10.1016/j.knosys.2023.111290
摘要

Accurate prediction of stock market trends and movements holds great significance in the financial industry as it enables investors, traders, and decision-makers to make informed choices and optimize their investment strategies. In the context of the oil and gas sector, where stock prices are influenced by complex market dynamics and various external factors, reliable predictions are essential for effective decision-making and risk management. This study proposes Deep Long Short-Term Memory Q-Learning (DLQL) and Deep Long Short-Term Memory Attention Q-Learning (DLAQL) models and state-of-the-art Long Short-Term Memory (LSTM) for predicting stock prices in the oil and gas sector. The study utilizes historical stock price data of Cenovus Energy Inc. (CVE), MPLX LP (MPLX), Cheniere Energy Inc. (LNG), and Suncor Energy Inc. (SU) to create and validate these models. The research employs the Markov Decision Process (MDP) framework, a widely-used reinforcement learning technique, to train the deep LSTM Q-Learning and deep LSTM Attention Q-Learning models. This framework allows the models to learn optimal policies based on historical data, enabling them to make accurate predictions and adapt to changing market conditions. The findings of this study reveal that the proposed DLQL and DLAQL perform excellently well in terms of prediction accuracy in the oil and gas sector. The inclusion of attention mechanisms in the DLAQL model further enhances its performance by allowing it to focus on important features and capture relevant information. The results of this research underscore the potential of deep LSTM Q-Learning and deep LSTM Attention Q-Learning models in stock market prediction within the oil and gas sector. The application of these models can lead to improved decision-making, enhanced risk management, and increased profitability for market participants. Further exploration and refinement of these models, along with the incorporation of additional variables and market indicators, can contribute to the development of more sophisticated prediction models in the future. Overall, this study contributes to the advancement of stock market prediction techniques, specifically in the oil and gas sector, by introducing and evaluating the efficacy of deep LSTM Q-Learning and deep LSTM Attention Q-Learning models. The findings highlight the importance of accurate stock market predictions and demonstrate the potential benefits of leveraging these models within the MDP framework to support decision-making and risk management in the dynamic and competitive oil and gas industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动的世平完成签到,获得积分10
1秒前
可爱的函函应助一一采纳,获得10
1秒前
1秒前
zhu完成签到,获得积分10
2秒前
俏皮的龙猫完成签到 ,获得积分10
2秒前
2秒前
SciGPT应助认真的一刀采纳,获得10
2秒前
3秒前
3秒前
甲基正离子完成签到,获得积分10
4秒前
hzl完成签到,获得积分10
4秒前
Lam完成签到,获得积分10
4秒前
大白发布了新的文献求助10
4秒前
4秒前
李爱国应助Hu采纳,获得10
5秒前
5秒前
小欧医生完成签到,获得积分10
5秒前
6秒前
6秒前
老肥完成签到,获得积分10
7秒前
易安发布了新的文献求助10
7秒前
洋洋洋完成签到,获得积分10
7秒前
7秒前
冷傲迎梦发布了新的文献求助10
8秒前
8秒前
Agernon应助晓军采纳,获得10
8秒前
小夭发布了新的文献求助10
9秒前
无聊的翠芙完成签到,获得积分10
9秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
wjj发布了新的文献求助10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
彭于晏应助鱼与树采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678