Stable Exploration via Imitating Highly Scored Episode-Decayed Exploration Episodes in Procedurally Generated Environments

过度拟合 排名(信息检索) 计算机科学 模仿 人工智能 集合(抽象数据类型) 机器学习 心理学 人工神经网络 神经科学 程序设计语言
作者
Mao Xu,Shuzhi Sam Ge,Dongjie Zhao,Qian Zhao
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 1121-1133 被引量:1
标识
DOI:10.1109/tcds.2023.3339215
摘要

Exploring procedurally-generated environments is a formidable challenge for model-free deep reinforcement learning (DRL). One of the state-of-the-art exploration methods, exploration via ranking the episodes (RAPID), assigns episode-level episodic exploration scores to past episodes and makes the DRL agent imitate exploration behaviors from the highly-scored episodes. However, in complex procedurally-generated environments, such continued imitation can hinder RAPID's performance due to the emergence of solidified episodes, i.e., episodes that remain in the highly-scored episode set due to their high scores. These solidified episodes can lead the RAPID DRL agent to overfit, hindering its exploration and performance. To address this, we design an episode-decayed exploration score, which combines the episodic exploration score and an episodic decay factor, to avoid solidifying highly-scored episodes and aid in selecting good exploration episodes. Leveraging this score, we propose exploration via imitating highly-scored episode-decayed exploration episodes (EDEE), an effective and stable exploration method for procedurally-generated environments. EDEE assigns episode-decayed exploration scores to past episodes and stores the highly-scored episodes as good exploration episodes in a small ranking buffer. The DRL agent then imitates good exploration behaviors sampled from this ranking buffer through the exploration-based sampling to reproduce these good exploration behaviors from good exploration episodes. Extensive experiments on procedurally-generated environments, specifically MiniGrid and 3D maze from MiniWorld, and sparse MuJoCo environments show that EDEE significantly outperforms RAPID in terms of final performance and sample efficiency in complex procedurally-generated environments and sparse continuous environments. Moreover, even without extrinsic rewards, EDEE maintains excellent performance in procedurally-generated environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤金连完成签到,获得积分10
1秒前
ZHANG完成签到,获得积分10
1秒前
玩命的书琴完成签到,获得积分10
1秒前
烧饼拌糖完成签到,获得积分10
2秒前
研友_VZG7GZ应助Zp采纳,获得10
2秒前
可爱的函函应助壮观梦易采纳,获得10
6秒前
周全敏完成签到 ,获得积分10
7秒前
dalei001完成签到 ,获得积分10
8秒前
9秒前
歪歪完成签到,获得积分10
10秒前
科研通AI2S应助研友_rLmrgn采纳,获得10
10秒前
11秒前
糯米种子完成签到,获得积分10
12秒前
13秒前
llllll完成签到,获得积分10
14秒前
Lyue发布了新的文献求助10
14秒前
林非鹿发布了新的文献求助30
14秒前
科目三应助苗条的寒珊采纳,获得10
17秒前
大龙哥886应助大力的问蕊采纳,获得10
18秒前
18秒前
黎娅完成签到 ,获得积分10
19秒前
mjc完成签到 ,获得积分10
20秒前
andy完成签到,获得积分10
20秒前
Orange应助ttg990720采纳,获得10
20秒前
科研通AI2S应助葡萄柚采纳,获得10
22秒前
nn完成签到,获得积分10
22秒前
英俊的铭应助幸福台灯采纳,获得10
23秒前
bingsu108完成签到,获得积分10
24秒前
24秒前
24秒前
顾矜应助楼梯口无头女孩采纳,获得10
25秒前
FashionBoy应助明理慕灵采纳,获得10
26秒前
英俊的铭应助歪歪采纳,获得10
26秒前
27秒前
28秒前
29秒前
29秒前
nan发布了新的文献求助10
29秒前
huangbing123发布了新的文献求助10
30秒前
妙手回春板蓝根完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281