Stable Exploration via Imitating Highly Scored Episode-Decayed Exploration Episodes in Procedurally Generated Environments

过度拟合 排名(信息检索) 计算机科学 模仿 人工智能 集合(抽象数据类型) 机器学习 心理学 人工神经网络 神经科学 程序设计语言
作者
Mao Xu,Shuzhi Sam Ge,Dongjie Zhao,Qian Zhao
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 1121-1133 被引量:1
标识
DOI:10.1109/tcds.2023.3339215
摘要

Exploring procedurally-generated environments is a formidable challenge for model-free deep reinforcement learning (DRL). One of the state-of-the-art exploration methods, exploration via ranking the episodes (RAPID), assigns episode-level episodic exploration scores to past episodes and makes the DRL agent imitate exploration behaviors from the highly-scored episodes. However, in complex procedurally-generated environments, such continued imitation can hinder RAPID's performance due to the emergence of solidified episodes, i.e., episodes that remain in the highly-scored episode set due to their high scores. These solidified episodes can lead the RAPID DRL agent to overfit, hindering its exploration and performance. To address this, we design an episode-decayed exploration score, which combines the episodic exploration score and an episodic decay factor, to avoid solidifying highly-scored episodes and aid in selecting good exploration episodes. Leveraging this score, we propose exploration via imitating highly-scored episode-decayed exploration episodes (EDEE), an effective and stable exploration method for procedurally-generated environments. EDEE assigns episode-decayed exploration scores to past episodes and stores the highly-scored episodes as good exploration episodes in a small ranking buffer. The DRL agent then imitates good exploration behaviors sampled from this ranking buffer through the exploration-based sampling to reproduce these good exploration behaviors from good exploration episodes. Extensive experiments on procedurally-generated environments, specifically MiniGrid and 3D maze from MiniWorld, and sparse MuJoCo environments show that EDEE significantly outperforms RAPID in terms of final performance and sample efficiency in complex procedurally-generated environments and sparse continuous environments. Moreover, even without extrinsic rewards, EDEE maintains excellent performance in procedurally-generated environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小权拳的权完成签到,获得积分10
刚刚
wangnn发布了新的文献求助10
刚刚
1秒前
splaker7完成签到,获得积分10
1秒前
HRB完成签到 ,获得积分10
1秒前
结实山水完成签到 ,获得积分10
2秒前
2秒前
源来是洲董完成签到,获得积分10
3秒前
yy完成签到,获得积分10
3秒前
杀出个黎明举报珂珂求助涉嫌违规
4秒前
麻辣烫完成签到 ,获得积分10
4秒前
不吃了完成签到 ,获得积分0
4秒前
5秒前
yunna_ning完成签到,获得积分0
5秒前
程程完成签到,获得积分10
5秒前
5秒前
TURBO发布了新的文献求助10
6秒前
朴素爆米花完成签到,获得积分10
6秒前
zipzhang完成签到 ,获得积分10
6秒前
Nathan完成签到,获得积分10
6秒前
冰雪物语完成签到,获得积分10
7秒前
可怜的游戏完成签到,获得积分10
7秒前
L3完成签到,获得积分10
8秒前
Antonio完成签到 ,获得积分10
9秒前
chongjian完成签到,获得积分10
9秒前
苻人英完成签到,获得积分10
10秒前
Epiphany完成签到,获得积分10
11秒前
清秀凡霜完成签到,获得积分10
11秒前
11秒前
超帅的薯片完成签到,获得积分10
12秒前
Ava应助冰雪物语采纳,获得10
13秒前
KYDD完成签到,获得积分10
13秒前
沉静的浩然完成签到 ,获得积分10
14秒前
ang完成签到,获得积分10
14秒前
甜橙完成签到 ,获得积分10
14秒前
英姑应助TURBO采纳,获得10
15秒前
wmuzhao发布了新的文献求助10
16秒前
kakakakak完成签到,获得积分10
17秒前
xixihaha完成签到,获得积分10
17秒前
机智的龙猫完成签到,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027