Stable Exploration via Imitating Highly Scored Episode-Decayed Exploration Episodes in Procedurally Generated Environments

过度拟合 排名(信息检索) 计算机科学 模仿 人工智能 集合(抽象数据类型) 机器学习 心理学 人工神经网络 神经科学 程序设计语言
作者
Mao Xu,Shuzhi Sam Ge,Dongjie Zhao,Qian Zhao
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 1121-1133 被引量:1
标识
DOI:10.1109/tcds.2023.3339215
摘要

Exploring procedurally-generated environments is a formidable challenge for model-free deep reinforcement learning (DRL). One of the state-of-the-art exploration methods, exploration via ranking the episodes (RAPID), assigns episode-level episodic exploration scores to past episodes and makes the DRL agent imitate exploration behaviors from the highly-scored episodes. However, in complex procedurally-generated environments, such continued imitation can hinder RAPID's performance due to the emergence of solidified episodes, i.e., episodes that remain in the highly-scored episode set due to their high scores. These solidified episodes can lead the RAPID DRL agent to overfit, hindering its exploration and performance. To address this, we design an episode-decayed exploration score, which combines the episodic exploration score and an episodic decay factor, to avoid solidifying highly-scored episodes and aid in selecting good exploration episodes. Leveraging this score, we propose exploration via imitating highly-scored episode-decayed exploration episodes (EDEE), an effective and stable exploration method for procedurally-generated environments. EDEE assigns episode-decayed exploration scores to past episodes and stores the highly-scored episodes as good exploration episodes in a small ranking buffer. The DRL agent then imitates good exploration behaviors sampled from this ranking buffer through the exploration-based sampling to reproduce these good exploration behaviors from good exploration episodes. Extensive experiments on procedurally-generated environments, specifically MiniGrid and 3D maze from MiniWorld, and sparse MuJoCo environments show that EDEE significantly outperforms RAPID in terms of final performance and sample efficiency in complex procedurally-generated environments and sparse continuous environments. Moreover, even without extrinsic rewards, EDEE maintains excellent performance in procedurally-generated environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
JXY发布了新的文献求助10
3秒前
今后应助淡然觅荷采纳,获得10
3秒前
7秒前
梦幻完成签到,获得积分10
7秒前
10秒前
10秒前
上官若男应助飞快的万声采纳,获得10
11秒前
景泰蓝完成签到,获得积分10
12秒前
15秒前
学习发布了新的文献求助10
15秒前
景泰蓝发布了新的文献求助30
15秒前
田様应助坚强的笑天采纳,获得30
15秒前
18秒前
Hello应助无足鸟采纳,获得10
23秒前
27秒前
28秒前
吉祥财子完成签到 ,获得积分10
28秒前
嗯哼应助姜苏婷采纳,获得10
30秒前
32秒前
35秒前
秋天吃掉了夏天完成签到,获得积分10
35秒前
37秒前
pigff完成签到,获得积分10
38秒前
光亮妙之完成签到,获得积分10
39秒前
甜甜秋荷发布了新的文献求助30
40秒前
酷酷的杨发布了新的文献求助10
41秒前
41秒前
可爱的函函应助JXY采纳,获得10
42秒前
无语的胡萝卜完成签到 ,获得积分10
44秒前
小田睡不醒完成签到,获得积分10
45秒前
xinbowey发布了新的文献求助10
45秒前
酷酷的杨完成签到,获得积分20
45秒前
Cc关闭了Cc文献求助
46秒前
小医小鱼完成签到,获得积分10
47秒前
Philthee完成签到,获得积分10
49秒前
Orange应助玩命的兔子采纳,获得10
49秒前
saber_lancer发布了新的文献求助30
52秒前
55秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343326
求助须知:如何正确求助?哪些是违规求助? 2970407
关于积分的说明 8643896
捐赠科研通 2650477
什么是DOI,文献DOI怎么找? 1451290
科研通“疑难数据库(出版商)”最低求助积分说明 672118
邀请新用户注册赠送积分活动 661492