A generalized data assimilation architecture of digital twin for complex process industrial systems

小波 残余物 卡尔曼滤波器 计算机科学 协方差 降噪 算法 控制理论(社会学) 人工智能 数学 统计 控制(管理)
作者
Yanbo Zhao,Haonan Jiang,Yuanli Cai,Yifan Deng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 066003-066003
标识
DOI:10.1088/1361-6501/ad27c6
摘要

Abstract As one of the critical cores of digital twin (DT), data assimilation (DA) can maintain consistency and synchronization between DT and physical system. Kalman filtering is a common DA method, but its estimation performance is deteriorated by factors such as model inaccuracy and time-varying noise covariance in practical applications. The errors caused by these multiple uncertainties are all coupled to the measurements, which augments the difficulty for DT to obtain physical system information. In order to tackle the DA problem with multiple uncertainties, this paper proposes a generalized DA architecture for DT in sophisticated process industry. First, by combining Stein variational gradient descent and nonlinear Bayesian filtering paradigm, a recursive estimation framework is established, which has higher accuracy in estimating the noise covariance compared to traditional methods. Second, to effectively deal with model inaccuracy by using filtering residuals containing time-varying noise, we propose a neural network and modified wavelet-based model error compensation (NNMW-MEC) block. Based on the modified wavelet technique, the filtering residual denoising built in NNMW-MEC can better cope with time-varying noise compared to existing wavelets, and extract the low-frequency signal involving model error information from noisy residual smoothly. In addition, because of the neural network-based state-compensation subblock, NNMW-MEC has more outstanding ability in compensating the state deviations with large changing range. Finally, we take the boiler system in a coal-fired power plant as an example to verify the effectiveness of our architecture. Experimental results show that the DA architecture proposed in this paper can improve the estimation performance of DT under inaccurate models and uncertain noise statistics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然的城发布了新的文献求助10
刚刚
1秒前
1秒前
Zjin宇发布了新的文献求助10
1秒前
asoc发布了新的文献求助10
2秒前
顺利墨镜完成签到,获得积分10
2秒前
zdccg完成签到,获得积分10
4秒前
4秒前
包子发布了新的文献求助10
5秒前
6秒前
懒洋洋发布了新的文献求助10
6秒前
Wenhao Zhao完成签到,获得积分10
6秒前
zz给zz的求助进行了留言
8秒前
柯ke完成签到,获得积分10
8秒前
相雁南发布了新的文献求助10
9秒前
10秒前
鲤鱼发布了新的文献求助20
10秒前
田様应助望TIAN采纳,获得10
10秒前
10秒前
10秒前
11秒前
卡不卡不发布了新的文献求助10
11秒前
思源应助西奥采纳,获得10
11秒前
11秒前
学术底层fw完成签到,获得积分10
13秒前
lwj完成签到,获得积分10
13秒前
123发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
15秒前
今后应助zry采纳,获得10
15秒前
桐桐应助半江采纳,获得10
15秒前
12发布了新的文献求助10
16秒前
16秒前
淳之风发布了新的文献求助10
17秒前
Ah完成签到,获得积分10
17秒前
18秒前
jessica发布了新的文献求助50
18秒前
SDSD发布了新的文献求助10
19秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129368
求助须知:如何正确求助?哪些是违规求助? 2780183
关于积分的说明 7746679
捐赠科研通 2435368
什么是DOI,文献DOI怎么找? 1294055
科研通“疑难数据库(出版商)”最低求助积分说明 623518
版权声明 600542