Beyond Self-Attention: External Attention Using Two Linear Layers for Visual Tasks

计算机科学 人工智能 规范化(社会学) 分割 模式识别(心理学) 特征(语言学) 人类学 语言学 哲学 社会学
作者
Meng-Hao Guo,Zheng-Ning Liu,Tai‐Jiang Mu,Shi‐Min Hu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (5): 1-13 被引量:578
标识
DOI:10.1109/tpami.2022.3211006
摘要

Attention mechanisms, especially self-attention, have played an increasingly important role in deep feature representation for visual tasks. Self-attention updates the feature at each position by computing a weighted sum of features using pair-wise affinities across all positions to capture the long-range dependency within a single sample. However, self-attention has quadratic complexity and ignores potential correlation between different samples. This article proposes a novel attention mechanism which we call external attention, based on two external, small, learnable, shared memories, which can be implemented easily by simply using two cascaded linear layers and two normalization layers; it conveniently replaces self-attention in existing popular architectures. External attention has linear complexity and implicitly considers the correlations between all data samples. We further incorporate the multi-head mechanism into external attention to provide an all-MLP architecture, external attention MLP (EAMLP), for image classification. Extensive experiments on image classification, object detection, semantic segmentation, instance segmentation, image generation, and point cloud analysis reveal that our method provides results comparable or superior to the self-attention mechanism and some of its variants, with much lower computational and memory costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小电驴完成签到,获得积分10
1秒前
时代炸蛋完成签到 ,获得积分10
1秒前
bo完成签到 ,获得积分10
2秒前
chenkj完成签到,获得积分10
3秒前
EricSai完成签到,获得积分0
4秒前
ikun完成签到,获得积分10
4秒前
研友_ZA2B68完成签到,获得积分0
4秒前
十一完成签到 ,获得积分10
5秒前
缥缈的闭月完成签到,获得积分10
6秒前
xhd183完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
ZHQ完成签到,获得积分10
11秒前
文心同学完成签到,获得积分0
12秒前
秋的账号完成签到 ,获得积分10
12秒前
Lrcx完成签到 ,获得积分10
12秒前
溪字完成签到,获得积分20
13秒前
月军完成签到,获得积分10
15秒前
研友_nvebxL完成签到,获得积分10
16秒前
风信子完成签到,获得积分10
16秒前
BK_201完成签到,获得积分10
19秒前
南城雨落完成签到 ,获得积分10
19秒前
Helios完成签到,获得积分10
19秒前
fuluyuzhe_668完成签到,获得积分10
19秒前
abiorz完成签到,获得积分0
20秒前
窗外是蔚蓝色完成签到,获得积分10
21秒前
丘奇完成签到,获得积分10
21秒前
21秒前
21秒前
nanostu完成签到,获得积分0
21秒前
华仔应助科研通管家采纳,获得10
21秒前
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
布吉布应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
顺利的蘑菇完成签到 ,获得积分10
22秒前
jhxie完成签到,获得积分10
22秒前
nssanc完成签到,获得积分10
23秒前
Amikacin完成签到,获得积分10
23秒前
leo完成签到,获得积分10
23秒前
鹏举瞰冷雨完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5677061
求助须知:如何正确求助?哪些是违规求助? 4969723
关于积分的说明 15159261
捐赠科研通 4836738
什么是DOI,文献DOI怎么找? 2591264
邀请新用户注册赠送积分活动 1544746
关于科研通互助平台的介绍 1502751