Beyond Self-Attention: External Attention Using Two Linear Layers for Visual Tasks

计算机科学 人工智能 规范化(社会学) 分割 模式识别(心理学) 特征(语言学) 人类学 语言学 哲学 社会学
作者
Meng-Hao Guo,Zheng-Ning Liu,Tai‐Jiang Mu,Shi‐Min Hu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (5): 1-13 被引量:578
标识
DOI:10.1109/tpami.2022.3211006
摘要

Attention mechanisms, especially self-attention, have played an increasingly important role in deep feature representation for visual tasks. Self-attention updates the feature at each position by computing a weighted sum of features using pair-wise affinities across all positions to capture the long-range dependency within a single sample. However, self-attention has quadratic complexity and ignores potential correlation between different samples. This article proposes a novel attention mechanism which we call external attention, based on two external, small, learnable, shared memories, which can be implemented easily by simply using two cascaded linear layers and two normalization layers; it conveniently replaces self-attention in existing popular architectures. External attention has linear complexity and implicitly considers the correlations between all data samples. We further incorporate the multi-head mechanism into external attention to provide an all-MLP architecture, external attention MLP (EAMLP), for image classification. Extensive experiments on image classification, object detection, semantic segmentation, instance segmentation, image generation, and point cloud analysis reveal that our method provides results comparable or superior to the self-attention mechanism and some of its variants, with much lower computational and memory costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘雅蕊完成签到 ,获得积分10
刚刚
ZeKaWa应助keyan123采纳,获得10
3秒前
将来路远发布了新的文献求助10
5秒前
Qinqinasm完成签到,获得积分10
6秒前
脑洞疼应助Jodie采纳,获得10
6秒前
xinghui应助清爽的梦秋采纳,获得10
10秒前
优美的巧蕊完成签到,获得积分10
11秒前
悦耳的咖啡豆完成签到,获得积分10
13秒前
wonder123完成签到,获得积分10
14秒前
cokk完成签到,获得积分20
15秒前
15秒前
16秒前
16秒前
后少年的story完成签到,获得积分10
19秒前
研友_VZG7GZ应助cokk采纳,获得10
19秒前
欢喜大白菜真实的钥匙完成签到 ,获得积分10
20秒前
22秒前
22秒前
ZeKaWa应助行者无疆采纳,获得10
23秒前
25秒前
25秒前
将来路远关注了科研通微信公众号
26秒前
小马甲应助钟鸿盛Domi采纳,获得10
26秒前
27秒前
忧郁的忆南完成签到 ,获得积分10
28秒前
科研通AI6应助我我采纳,获得10
31秒前
Jodie发布了新的文献求助10
31秒前
31秒前
32秒前
菠萝李发布了新的文献求助10
32秒前
擎天柱完成签到,获得积分10
32秒前
阮文名完成签到,获得积分10
33秒前
33秒前
33秒前
34秒前
鲁珊珊发布了新的文献求助10
36秒前
球球完成签到,获得积分10
38秒前
38秒前
17完成签到 ,获得积分10
40秒前
嘿嘿发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560313
求助须知:如何正确求助?哪些是违规求助? 4645465
关于积分的说明 14675208
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915