Beyond Self-Attention: External Attention Using Two Linear Layers for Visual Tasks

计算机科学 人工智能 规范化(社会学) 分割 模式识别(心理学) 特征(语言学) 人类学 语言学 哲学 社会学
作者
Meng-Hao Guo,Zheng-Ning Liu,Tai‐Jiang Mu,Shi‐Min Hu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (5): 1-13 被引量:578
标识
DOI:10.1109/tpami.2022.3211006
摘要

Attention mechanisms, especially self-attention, have played an increasingly important role in deep feature representation for visual tasks. Self-attention updates the feature at each position by computing a weighted sum of features using pair-wise affinities across all positions to capture the long-range dependency within a single sample. However, self-attention has quadratic complexity and ignores potential correlation between different samples. This article proposes a novel attention mechanism which we call external attention, based on two external, small, learnable, shared memories, which can be implemented easily by simply using two cascaded linear layers and two normalization layers; it conveniently replaces self-attention in existing popular architectures. External attention has linear complexity and implicitly considers the correlations between all data samples. We further incorporate the multi-head mechanism into external attention to provide an all-MLP architecture, external attention MLP (EAMLP), for image classification. Extensive experiments on image classification, object detection, semantic segmentation, instance segmentation, image generation, and point cloud analysis reveal that our method provides results comparable or superior to the self-attention mechanism and some of its variants, with much lower computational and memory costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助seven采纳,获得10
1秒前
小Z完成签到,获得积分10
2秒前
2秒前
suliang发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
KING发布了新的文献求助10
5秒前
KKK发布了新的文献求助10
5秒前
7秒前
mugglea完成签到 ,获得积分10
8秒前
8秒前
9秒前
10秒前
斯文败类应助余南采纳,获得10
10秒前
lighting完成签到 ,获得积分10
11秒前
11秒前
zzzzz发布了新的文献求助10
12秒前
12秒前
12秒前
LL完成签到 ,获得积分10
12秒前
77发布了新的文献求助10
12秒前
英吉利25发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
Sakura9235完成签到 ,获得积分10
15秒前
15秒前
15秒前
一个屁桃发布了新的文献求助30
15秒前
燕玲完成签到,获得积分10
16秒前
Steven24go发布了新的文献求助10
16秒前
温软发布了新的文献求助10
16秒前
你好发布了新的文献求助20
17秒前
asdfzxcv应助wt采纳,获得10
17秒前
cc应助hiipaige采纳,获得10
19秒前
材料生发布了新的文献求助10
19秒前
20秒前
李伟刘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643099
求助须知:如何正确求助?哪些是违规求助? 4760606
关于积分的说明 15020012
捐赠科研通 4801508
什么是DOI,文献DOI怎么找? 2566806
邀请新用户注册赠送积分活动 1524714
关于科研通互助平台的介绍 1484256