Beyond Self-Attention: External Attention Using Two Linear Layers for Visual Tasks

计算机科学 人工智能 规范化(社会学) 分割 模式识别(心理学) 特征(语言学) 人类学 语言学 哲学 社会学
作者
Meng-Hao Guo,Zheng-Ning Liu,Tai‐Jiang Mu,Shi‐Min Hu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (5): 1-13 被引量:578
标识
DOI:10.1109/tpami.2022.3211006
摘要

Attention mechanisms, especially self-attention, have played an increasingly important role in deep feature representation for visual tasks. Self-attention updates the feature at each position by computing a weighted sum of features using pair-wise affinities across all positions to capture the long-range dependency within a single sample. However, self-attention has quadratic complexity and ignores potential correlation between different samples. This article proposes a novel attention mechanism which we call external attention, based on two external, small, learnable, shared memories, which can be implemented easily by simply using two cascaded linear layers and two normalization layers; it conveniently replaces self-attention in existing popular architectures. External attention has linear complexity and implicitly considers the correlations between all data samples. We further incorporate the multi-head mechanism into external attention to provide an all-MLP architecture, external attention MLP (EAMLP), for image classification. Extensive experiments on image classification, object detection, semantic segmentation, instance segmentation, image generation, and point cloud analysis reveal that our method provides results comparable or superior to the self-attention mechanism and some of its variants, with much lower computational and memory costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叮咚jingle完成签到,获得积分10
刚刚
刚刚
lfc完成签到 ,获得积分10
1秒前
xz应助威武的皮卡丘采纳,获得10
1秒前
Su完成签到,获得积分10
1秒前
1秒前
俞儿发布了新的文献求助10
1秒前
zq完成签到,获得积分10
1秒前
a1313发布了新的文献求助10
2秒前
开心仙人掌完成签到,获得积分10
2秒前
精明觅荷完成签到,获得积分10
2秒前
2秒前
3秒前
传奇3应助谦让初柳采纳,获得10
3秒前
一只兔子发布了新的文献求助10
4秒前
4秒前
xshuang完成签到,获得积分10
4秒前
明理囧完成签到 ,获得积分10
5秒前
大模型应助ivy采纳,获得10
5秒前
科目三应助xwxhbydmet采纳,获得10
6秒前
993494543发布了新的文献求助10
6秒前
ZHL应助CNYDNZB采纳,获得10
6秒前
sia完成签到,获得积分10
7秒前
猫男爵发布了新的文献求助10
7秒前
7秒前
YuTaoYing发布了新的文献求助10
7秒前
凝雁完成签到,获得积分10
8秒前
amanda举报超级听南求助涉嫌违规
8秒前
8秒前
科研通AI6应助yangyang采纳,获得10
9秒前
Zen完成签到,获得积分10
9秒前
Calvin-funsom完成签到,获得积分10
9秒前
英俊的铭应助虚心的大树采纳,获得10
9秒前
寻道图强应助ceeray23采纳,获得200
9秒前
迎风竹林下应助kokodayour采纳,获得10
10秒前
11秒前
CipherSage应助空谷幽兰采纳,获得10
11秒前
等天黑完成签到,获得积分10
12秒前
shea完成签到,获得积分10
12秒前
iNk应助无敌鱼采纳,获得20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284