Beyond Self-Attention: External Attention Using Two Linear Layers for Visual Tasks

计算机科学 人工智能 规范化(社会学) 分割 模式识别(心理学) 特征(语言学) 人类学 语言学 哲学 社会学
作者
Meng-Hao Guo,Zheng-Ning Liu,Tai‐Jiang Mu,Shi‐Min Hu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-13 被引量:482
标识
DOI:10.1109/tpami.2022.3211006
摘要

Attention mechanisms, especially self-attention, have played an increasingly important role in deep feature representation for visual tasks. Self-attention updates the feature at each position by computing a weighted sum of features using pair-wise affinities across all positions to capture the long-range dependency within a single sample. However, self-attention has quadratic complexity and ignores potential correlation between different samples. This article proposes a novel attention mechanism which we call external attention, based on two external, small, learnable, shared memories, which can be implemented easily by simply using two cascaded linear layers and two normalization layers; it conveniently replaces self-attention in existing popular architectures. External attention has linear complexity and implicitly considers the correlations between all data samples. We further incorporate the multi-head mechanism into external attention to provide an all-MLP architecture, external attention MLP (EAMLP), for image classification. Extensive experiments on image classification, object detection, semantic segmentation, instance segmentation, image generation, and point cloud analysis reveal that our method provides results comparable or superior to the self-attention mechanism and some of its variants, with much lower computational and memory costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助寄AAA采纳,获得10
1秒前
量子星尘发布了新的文献求助150
1秒前
肖战战完成签到 ,获得积分10
1秒前
大内泌探009完成签到,获得积分10
1秒前
4秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得20
5秒前
Akim应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
YWang应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
唔卡玛卡巴卡完成签到,获得积分20
7秒前
eric888应助英俊汽车采纳,获得100
8秒前
8秒前
Bob完成签到,获得积分10
8秒前
修越完成签到 ,获得积分10
8秒前
斯文败类应助kesler采纳,获得10
9秒前
9秒前
CodeCraft应助diedka采纳,获得10
9秒前
cardiology完成签到,获得积分10
9秒前
9秒前
科研通AI6应助科研采纳,获得10
9秒前
anyone发布了新的文献求助10
10秒前
Geng发布了新的文献求助10
10秒前
10秒前
华仔应助甜甜采纳,获得10
13秒前
怪怪发布了新的文献求助10
13秒前
15秒前
汉堡包应助旭日东升采纳,获得30
17秒前
17秒前
研友_LBR9gL完成签到 ,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069472
求助须知:如何正确求助?哪些是违规求助? 4290805
关于积分的说明 13368855
捐赠科研通 4111012
什么是DOI,文献DOI怎么找? 2251169
邀请新用户注册赠送积分活动 1256420
关于科研通互助平台的介绍 1188901