Beyond Self-Attention: External Attention Using Two Linear Layers for Visual Tasks

计算机科学 人工智能 规范化(社会学) 分割 模式识别(心理学) 特征(语言学) 人类学 语言学 哲学 社会学
作者
Meng-Hao Guo,Zheng-Ning Liu,Tai‐Jiang Mu,Shi‐Min Hu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:417
标识
DOI:10.1109/tpami.2022.3211006
摘要

Attention mechanisms, especially self-attention, have played an increasingly important role in deep feature representation for visual tasks. Self-attention updates the feature at each position by computing a weighted sum of features using pair-wise affinities across all positions to capture the long-range dependency within a single sample. However, self-attention has quadratic complexity and ignores potential correlation between different samples. This article proposes a novel attention mechanism which we call external attention, based on two external, small, learnable, shared memories, which can be implemented easily by simply using two cascaded linear layers and two normalization layers; it conveniently replaces self-attention in existing popular architectures. External attention has linear complexity and implicitly considers the correlations between all data samples. We further incorporate the multi-head mechanism into external attention to provide an all-MLP architecture, external attention MLP (EAMLP), for image classification. Extensive experiments on image classification, object detection, semantic segmentation, instance segmentation, image generation, and point cloud analysis reveal that our method provides results comparable or superior to the self-attention mechanism and some of its variants, with much lower computational and memory costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
4秒前
4秒前
5秒前
科研通AI5应助无悔呀采纳,获得10
5秒前
5秒前
littlewhite关注了科研通微信公众号
6秒前
6秒前
零点起步完成签到,获得积分10
6秒前
慕青应助大力的含卉采纳,获得10
6秒前
善良过客发布了新的文献求助10
7秒前
7秒前
7秒前
dildil发布了新的文献求助10
7秒前
7秒前
hu970发布了新的文献求助10
8秒前
8秒前
王思鲁发布了新的文献求助30
8秒前
七个小矮人完成签到,获得积分10
9秒前
Aria完成签到,获得积分10
9秒前
感性的安露应助结实雪卉采纳,获得20
10秒前
零点起步发布了新的文献求助10
11秒前
故意的傲玉应助Ll采纳,获得10
11秒前
斯文败类应助xiuxiu_27采纳,获得10
11秒前
胖子完成签到,获得积分10
11秒前
王巧巧完成签到,获得积分10
11秒前
tangsuyun发布了新的文献求助10
12秒前
祝顺遂发布了新的文献求助10
12秒前
Seven发布了新的文献求助10
12秒前
土拨鼠完成签到 ,获得积分10
13秒前
邢夏之发布了新的文献求助10
13秒前
漂亮芹菜完成签到,获得积分10
13秒前
ZXH完成签到,获得积分10
13秒前
Evelyn完成签到 ,获得积分10
13秒前
习习应助sb采纳,获得10
14秒前
14秒前
14秒前
斯文败类应助liu采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759