How firms support formal standardization: The role of alliance portfolio and internal technological diversity

标准化 联盟 文件夹 多样性(政治) 产业组织 业务 营销 专利组合 知识管理 计算机科学 知识产权 财务 法学 社会学 操作系统 人类学 政治学
作者
Jinyan Wen,Jian Li,Qing Zhou,Deming Zeng,Rainer Harms
出处
期刊:Technological Forecasting and Social Change [Elsevier BV]
卷期号:196: 122854-122854 被引量:1
标识
DOI:10.1016/j.techfore.2023.122854
摘要

Influencing formal standard setting through supporting the technical solutions advocated by leading firms is crucial for firms to make their technology become a part of the ecosystem of the dominant standards and to ensure market acceptance. Nevertheless, the problem is that potential supporters do not know how to improve their ability to support formal standardization. This problem is relevant because supporters are the majority of firms in technology ecosystems, failing to contribute to the standard may render firms irrelevant in future markets, and a low degree of support slows down standardization processes and hence technological innovation. Using the knowledge-based view of the firm, we hypothesize that the diversity of a firm's external alliance portfolio and internal technology base affects the firm's capability of supporting standardization. An analysis of panel data of 186 vehicle manufacturers in the Chinese automobile industry from 1999 to 2020 shows that the alliance portfolio diversity (APD) has an inverted U-shaped relationship with firms' ability to support formal standardization. A firm enjoys an advantage in supporting standardization when it maintains a technology base with highly related diversity but suffers a disadvantage when it is highly diversified across unrelated domains. Further, related and unrelated technological diversity steepens the slopes of the inverted U-shape relationship between alliance portfolio diversity and the ability to support standardization. This study extends standardization literature, adding new insight of knowledge-driven to the research on the antecedents of the firm capability to influence standardization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燧人氏发布了新的文献求助10
1秒前
1秒前
需要吗发布了新的文献求助10
1秒前
1秒前
1秒前
累鼠的牛马关注了科研通微信公众号
1秒前
2秒前
llz完成签到,获得积分10
3秒前
4秒前
4秒前
ShellyHan完成签到,获得积分10
5秒前
张可发布了新的文献求助10
5秒前
美丽迎梦发布了新的文献求助10
5秒前
guhuijun发布了新的文献求助10
6秒前
刻苦幻梅完成签到,获得积分10
7秒前
Brightan发布了新的文献求助10
7秒前
充电宝应助yaya采纳,获得10
7秒前
7秒前
8秒前
9秒前
JHJ发布了新的文献求助10
9秒前
10秒前
Jasper应助犹豫的若采纳,获得10
12秒前
12秒前
qyzhu发布了新的文献求助10
13秒前
14秒前
慕青应助很菜的研究生采纳,获得10
14秒前
15秒前
15秒前
领导范儿应助鸭鸭采纳,获得10
17秒前
17秒前
科研通AI5应助叶羽天采纳,获得10
18秒前
18秒前
科目三应助tuluiioo采纳,获得10
18秒前
18秒前
拼搏诗翠发布了新的文献求助10
19秒前
guhuijun完成签到,获得积分10
19秒前
21秒前
22秒前
Ruiruirui发布了新的文献求助10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427