已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Multilabel Text Classifier of Cancer Literature at the Publication Level: Methods Study of Medical Text Classification

计算机科学 分类器(UML) 人工智能 机器学习 术语 情报检索 自然语言处理 哲学 语言学
作者
Ying Zhang,M Kellis,Yi Liu,Aihua Li,Xuemei Yang,Xiaoli Tang
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:11: e44892-e44892 被引量:3
标识
DOI:10.2196/44892
摘要

Background Given the threat posed by cancer to human health, there is a rapid growth in the volume of data in the cancer field and interdisciplinary and collaborative research is becoming increasingly important for fine-grained classification. The low-resolution classifier of reported studies at the journal level fails to satisfy advanced searching demands, and a single label does not adequately characterize the literature originated from interdisciplinary research results. There is thus a need to establish a multilabel classifier with higher resolution to support literature retrieval for cancer research and reduce the burden of screening papers for clinical relevance. Objective The primary objective of this research was to address the low-resolution issue of cancer literature classification due to the ambiguity of the existing journal-level classifier in order to support gaining high-relevance evidence for clinical consideration and all-sided results for literature retrieval. Methods We trained a multilabel classifier with scalability for classifying the literature on cancer research directly at the publication level to assign proper content-derived labels based on the “Bidirectional Encoder Representation from Transformers (BERT) + X” model and obtain the best option for X. First, a corpus of 70,599 cancer publications retrieved from the Dimensions database was divided into a training and a testing set in a ratio of 7:3. Second, using the classification terminology of International Cancer Research Partnership cancer types, we compared the performance of classifiers developed using BERT and 5 classical deep learning models, such as the text recurrent neural network (TextRNN) and FastText, followed by metrics analysis. Results After comparing various combined deep learning models, we obtained a classifier based on the optimal combination “BERT + TextRNN,” with a precision of 93.09%, a recall of 87.75%, and an F1-score of 90.34%. Moreover, we quantified the distinctive characteristics in the text structure and multilabel distribution in order to generalize the model to other fields with similar characteristics. Conclusions The “BERT + TextRNN” model was trained for high-resolution classification of cancer literature at the publication level to support accurate retrieval and academic statistics. The model automatically assigns 1 or more labels to each cancer paper, as required. Quantitative comparison verified that the “BERT + TextRNN” model is the best fit for multilabel classification of cancer literature compared to other models. More data from diverse fields will be collected to testify the scalability and extensibility of the proposed model in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤觅柔完成签到,获得积分10
1秒前
2秒前
等待听安完成签到 ,获得积分10
4秒前
5秒前
星辰大海应助李庆采纳,获得10
5秒前
kitlov发布了新的文献求助10
7秒前
8秒前
打打应助安然采纳,获得10
9秒前
9秒前
科研通AI2S应助默默的西牛采纳,获得10
10秒前
贤君发布了新的文献求助10
10秒前
PENG应助Hana采纳,获得10
10秒前
10秒前
11秒前
jyh完成签到,获得积分20
11秒前
充电宝应助爱学习采纳,获得10
12秒前
12秒前
gq0401关注了科研通微信公众号
13秒前
淡然发夹完成签到,获得积分10
14秒前
14秒前
14秒前
jyh发布了新的文献求助10
14秒前
15秒前
15秒前
共享精神应助积极的怀亦采纳,获得10
15秒前
深情安青应助安然采纳,获得10
15秒前
Owen应助机灵冬灵采纳,获得10
15秒前
优秀少年发布了新的文献求助10
15秒前
自信松思发布了新的文献求助10
18秒前
hackfeng完成签到,获得积分10
19秒前
侃侃发布了新的文献求助10
19秒前
大喜子发布了新的文献求助10
19秒前
21秒前
李庆发布了新的文献求助10
21秒前
田様应助纯真的笑珊采纳,获得10
21秒前
SciGPT应助安然采纳,获得10
22秒前
斯文败类应助高强采纳,获得10
25秒前
小蘑菇应助阳光以筠采纳,获得10
25秒前
科研通AI5应助黒面包采纳,获得10
26秒前
娟儿完成签到 ,获得积分10
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073176
关于积分的说明 9129919
捐赠科研通 2764838
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009