染色质
转录因子
染色质免疫沉淀
生物
调节器
肾
肾脏疾病
发病机制
纤维化
基因
计算生物学
染色质重塑
疾病
细胞生物学
癌症研究
生物信息学
发起人
遗传学
医学
病理
基因表达
免疫学
内分泌学
作者
Minho Eun,Donggun Kim,S Shin,Hyun Oh Yang,Kyoung-Dong Kim,Sin Young Choi,Sehoon Park,Dong Ki Kim,Chang Wook Jeong,Kyung Chul Moon,Hajeong Lee,Jihwan Park
标识
DOI:10.1016/j.kint.2023.09.030
摘要
Diabetes is the leading cause of kidney disease that progresses to kidney failure. However, the key molecular and cellular pathways involved in diabetic kidney disease (DKD) pathogenesis are largely unknown. Here, we performed a comparative analysis of adult human kidneys by examining cell type-specific chromatin accessibility by single-nucleus ATAC-seq (snATAC-seq) and analyzing three-dimensional chromatin architecture via high-throughput chromosome conformation capture (Hi-C method) of paired samples. We mapped the cell type-specific and DKD-specific open chromatin landscape and found that genetic variants associated with kidney diseases were significantly enriched in the proximal tubule- (PT) and injured PT-specific open chromatin regions in samples from patients with DKD. BACH1 was identified as a core transcription factor of injured PT cells; its binding target genes were highly associated with fibrosis and inflammation, which were also key features of injured PT cells. Additionally, Hi-C analysis revealed global chromatin architectural changes in DKD, accompanied by changes in local open chromatin patterns. Combining the snATAC-seq and Hi-C data identified direct target genes of BACH1, and indicated that BACH1 binding regions showed increased chromatin contact frequency with promoters of their target genes in DKD. Thus, our multi-omics analysis revealed BACH1 target genes in injured PTs and highlighted the role of BACH1 as a novel regulator of tubular inflammation and fibrosis. Diabetes is the leading cause of kidney disease that progresses to kidney failure. However, the key molecular and cellular pathways involved in diabetic kidney disease (DKD) pathogenesis are largely unknown. Here, we performed a comparative analysis of adult human kidneys by examining cell type-specific chromatin accessibility by single-nucleus ATAC-seq (snATAC-seq) and analyzing three-dimensional chromatin architecture via high-throughput chromosome conformation capture (Hi-C method) of paired samples. We mapped the cell type-specific and DKD-specific open chromatin landscape and found that genetic variants associated with kidney diseases were significantly enriched in the proximal tubule- (PT) and injured PT-specific open chromatin regions in samples from patients with DKD. BACH1 was identified as a core transcription factor of injured PT cells; its binding target genes were highly associated with fibrosis and inflammation, which were also key features of injured PT cells. Additionally, Hi-C analysis revealed global chromatin architectural changes in DKD, accompanied by changes in local open chromatin patterns. Combining the snATAC-seq and Hi-C data identified direct target genes of BACH1, and indicated that BACH1 binding regions showed increased chromatin contact frequency with promoters of their target genes in DKD. Thus, our multi-omics analysis revealed BACH1 target genes in injured PTs and highlighted the role of BACH1 as a novel regulator of tubular inflammation and fibrosis. Leveraging multimodal chromatin profiling to identify a new potential driver of diabetic kidney diseaseKidney InternationalVol. 105Issue 1PreviewThe 3-dimensional nature of chromatin architecture plays crucial roles in regulating gene expression in development, homeostasis, and disease. Until recently, however, comprehensive chromatin profiling in human kidneys has been lacking. In this issue, Eun and Kim et al. employed a multimodal approach by integrating a single-nucleus assay for transposase-accessible chromatin sequencing, chromatin immunoprecipitation sequencing, and Hi-C (a method to comprehensively detect chromatin interactions) to investigate how the epigenetic landscape is altered in diabetic kidney disease. Full-Text PDF
科研通智能强力驱动
Strongly Powered by AbleSci AI