清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of Cyanobacteria Using Decision Tree Algorithm and Sensor Monitoring Data

藻类 决策树 算法 环境科学 蓝藻 计算机科学 范畴变量 水质 预警系统 机器学习 蓝藻 生态学 地质学 生物 电信 古生物学 细菌
作者
B.G. Jo,Woo-Suk Jung,Su-Han Nam,Young‐Do Kim
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (22): 12266-12266
标识
DOI:10.3390/app132212266
摘要

A multifunctional weir was built on the Nakdong River. As a result, changes in the river environment occurred, such as an increase in river residence time. This causes changes in water quality, including green algae. The occurrence of green algae in the Nakdong River, which is used as a water source, also affects the purified water supply system. In particular, the mass spread of harmful algae is becoming a major problem as the frequency and intensity of occurrences increase. There are various causes of blue-green algae. We would like to examine the relationships between causal factors through a decision tree-based algorithm. Additionally, we would like to predict the occurrence of green algae based on the combination of these factors. For prediction, we studied categorical prediction based on the blue-green algae warning system used in Korea. RF, Catboost and XGBoost algorithms were used. Optimal hyperparameters were applied. We compared the prediction performance of each algorithm. In addition, the predictability of using sensor-based data was reviewed for a preemptive response to the occurrence of blue-green algae. By applying sensor-based data, the accuracy was over 80%. Prediction accuracy by category was also over 75%. It is believed that real-time prediction is possible through sensor-based factors. The optimal forecast period was analyzed to determine whether a preemptive response was possible and the possibility of improvement was examined through the segmentation of prediction categories. When there were three categories, 79% of predictions were possible by the 21st day. In seven categories, 75% prediction was possible up to 14 days. In this study, sensor-based categorical predictability was derived. In addition, real-time response and proactive response were determined. Such sensor-based algae prediction research is considered important for future blue-green algae management and river management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoyisheng完成签到,获得积分10
5秒前
153266916完成签到 ,获得积分10
9秒前
称心的绿竹完成签到,获得积分10
18秒前
李志全完成签到 ,获得积分10
34秒前
jena完成签到 ,获得积分10
35秒前
复杂的可乐完成签到 ,获得积分10
35秒前
李健应助美丽的老头采纳,获得10
36秒前
老老熊完成签到,获得积分10
51秒前
吃的饱饱呀完成签到 ,获得积分10
59秒前
紫熊发布了新的文献求助10
1分钟前
Chere20200628完成签到 ,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
1分钟前
Eileen完成签到 ,获得积分10
1分钟前
qtmxxx发布了新的文献求助10
1分钟前
coding完成签到,获得积分10
1分钟前
笔墨纸砚完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
听风挽完成签到 ,获得积分10
2分钟前
CodeCraft应助qtmxxx采纳,获得10
2分钟前
美丽的老头完成签到,获得积分10
2分钟前
无极微光应助白华苍松采纳,获得20
2分钟前
David完成签到 ,获得积分10
2分钟前
丘比特应助美丽的老头采纳,获得10
2分钟前
灯座完成签到,获得积分20
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
熊金子完成签到 ,获得积分10
2分钟前
2分钟前
轻松寄风发布了新的文献求助10
2分钟前
笑傲完成签到,获得积分10
2分钟前
医研完成签到 ,获得积分10
2分钟前
好学的泷泷完成签到 ,获得积分10
3分钟前
朴实乐天完成签到,获得积分10
3分钟前
Zhahu完成签到 ,获得积分10
3分钟前
Mr.H完成签到 ,获得积分10
3分钟前
机智的嘻嘻完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565141
求助须知:如何正确求助?哪些是违规求助? 4649981
关于积分的说明 14689383
捐赠科研通 4591820
什么是DOI,文献DOI怎么找? 2519371
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463098