Prediction of Cyanobacteria Using Decision Tree Algorithm and Sensor Monitoring Data

藻类 决策树 算法 环境科学 蓝藻 计算机科学 范畴变量 水质 预警系统 机器学习 蓝藻 生态学 地质学 生物 电信 古生物学 细菌
作者
B.G. Jo,Woo-Suk Jung,Su-Han Nam,Young‐Do Kim
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (22): 12266-12266
标识
DOI:10.3390/app132212266
摘要

A multifunctional weir was built on the Nakdong River. As a result, changes in the river environment occurred, such as an increase in river residence time. This causes changes in water quality, including green algae. The occurrence of green algae in the Nakdong River, which is used as a water source, also affects the purified water supply system. In particular, the mass spread of harmful algae is becoming a major problem as the frequency and intensity of occurrences increase. There are various causes of blue-green algae. We would like to examine the relationships between causal factors through a decision tree-based algorithm. Additionally, we would like to predict the occurrence of green algae based on the combination of these factors. For prediction, we studied categorical prediction based on the blue-green algae warning system used in Korea. RF, Catboost and XGBoost algorithms were used. Optimal hyperparameters were applied. We compared the prediction performance of each algorithm. In addition, the predictability of using sensor-based data was reviewed for a preemptive response to the occurrence of blue-green algae. By applying sensor-based data, the accuracy was over 80%. Prediction accuracy by category was also over 75%. It is believed that real-time prediction is possible through sensor-based factors. The optimal forecast period was analyzed to determine whether a preemptive response was possible and the possibility of improvement was examined through the segmentation of prediction categories. When there were three categories, 79% of predictions were possible by the 21st day. In seven categories, 75% prediction was possible up to 14 days. In this study, sensor-based categorical predictability was derived. In addition, real-time response and proactive response were determined. Such sensor-based algae prediction research is considered important for future blue-green algae management and river management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傲娇时光完成签到,获得积分10
刚刚
Akim应助kkPi采纳,获得10
1秒前
紫丁香完成签到 ,获得积分10
2秒前
四叶草哦完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
机智乐蕊完成签到,获得积分10
4秒前
5秒前
故事细腻完成签到 ,获得积分10
5秒前
Zzy0816完成签到,获得积分10
5秒前
棉花完成签到 ,获得积分10
5秒前
无极微光应助学术牛马采纳,获得20
5秒前
6秒前
nanjiab发布了新的文献求助10
6秒前
6秒前
山雀完成签到,获得积分10
8秒前
任炳成完成签到,获得积分20
9秒前
Rowan发布了新的文献求助10
9秒前
kkkkpoa完成签到,获得积分10
10秒前
善良水池完成签到,获得积分10
10秒前
11秒前
Lucy发布了新的文献求助10
11秒前
11秒前
完美世界应助bbbjddd采纳,获得10
11秒前
忧伤的映阳完成签到 ,获得积分10
12秒前
zbaby发布了新的文献求助10
12秒前
12秒前
12秒前
Ava应助笑点低的静竹采纳,获得10
13秒前
Orange应助坚强的访蕊采纳,获得10
14秒前
受伤毛豆完成签到,获得积分10
14秒前
酷波er应助私欲宝宝采纳,获得10
14秒前
后知后觉发布了新的文献求助10
15秒前
16秒前
DD发布了新的文献求助10
16秒前
16秒前
林淼完成签到 ,获得积分10
16秒前
17秒前
李健的小迷弟应助归诚采纳,获得10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600957
求助须知:如何正确求助?哪些是违规求助? 4686530
关于积分的说明 14844417
捐赠科研通 4679086
什么是DOI,文献DOI怎么找? 2539100
邀请新用户注册赠送积分活动 1505992
关于科研通互助平台的介绍 1471252