微电网
储能
计算机科学
遗传算法
计算机数据存储
超级电容器
热能储存
经济调度
可靠性(半导体)
能量(信号处理)
分布式发电
功率(物理)
可靠性工程
电力系统
可再生能源
工程类
电气工程
数学
物理
物理化学
人工智能
机器学习
化学
操作系统
统计
生物
电极
量子力学
电化学
控制(管理)
生态学
作者
Dengfeng Cheng,Bin Xu,Weiguo Li,Qiong Wu,Liang Cheng,Zhiyong Yuan,Wei Zhao,Wei Ma,Jiewen Zhao
标识
DOI:10.1109/iciea58696.2023.10241562
摘要
The hybrid energy storage microgrid consists of multiple energy storage technologies, including battery energy storage systems, supercapacitors, compressed air energy storage, and hydrogen energy storage, among others. This multi-energy storage system enables efficient conversion, storage, and utilization of electrical and thermal energy through collaborative operation and mutual supplementation, thereby enhancing the energy supply reliability and economic viability of the overall energy system. In this paper, we propose a novel genetic algorithm-based optimal economic dispatch strategy for hybrid energy storage microgrids. The objective is to minimize the operational cost of the microgrid while satisfying the energy demand and various operational constraints. The proposed genetic algorithm considers the dynamic characteristics and constraints of different energy storage technologies, allowing for an optimized allocation of power and energy among the storage systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI