An entropy-based weighted dissimilarity metric for numerical data clustering using the distribution of intra feature differences

聚类分析 计算机科学 模式识别(心理学) 加权 熵(时间箭头) 数据挖掘 特征(语言学) 人工智能 Kullback-Leibler散度 数学 算法 统计 物理 语言学 哲学 量子力学 声学
作者
Abdul Atif Khan,Amaresh Chandra Mishra,Sraban Kumar Mohanty
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:280: 110967-110967 被引量:1
标识
DOI:10.1016/j.knosys.2023.110967
摘要

Suitable selection of a proximity measure is one of the fundamental requirements of clustering. With conventional (dis)similarity measures, many clustering algorithms do not yield satisfactory results on complex high-dimensional datasets. The problem lies with widely varying distributions along each feature which existing (dis)similarity measures fail to capture. In this work, we study the distribution of all-pair absolute distances in some standard real datasets over the feature space and observe that most of them have values near to zero. The frequency of data pairs decreases with the increasing value of distance which suggests an exponential distribution of values along features. The exponential decay rate constant, termed as characteristic length indicates the inhomogeneity in a feature and therefore, we use it as a weighting factor across attributes. The dissimilarity for a pair of data points is computed by considering the weights of each attribute along with a continuum adaptation of Boltzmann’s notion of entropy which uses feature-wise absolute differences as input. We prove that the proposed measure is a metric. For experimental analysis, we compare different proximity measures with the proposed, in terms of clustering results. The combination of feature wise characteristic length and the continuous version of Boltzmann’s entropy proves its excellence in terms of clustering results on diversified synthetic, real, and gene expression datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYanan完成签到,获得积分10
刚刚
刚刚
ghan发布了新的文献求助10
刚刚
Eureka完成签到 ,获得积分10
刚刚
1秒前
脑洞疼应助飞星采纳,获得10
2秒前
生活不是电影完成签到,获得积分10
3秒前
艺瑾发布了新的文献求助10
4秒前
jnjfn发布了新的文献求助10
4秒前
小牛完成签到,获得积分10
6秒前
7秒前
7秒前
张演基完成签到,获得积分10
8秒前
wanci应助megamind采纳,获得10
9秒前
彭于晏应助阔达小懒虫采纳,获得10
11秒前
鹿飞松应助否极泰来采纳,获得20
12秒前
12秒前
12秒前
无花果应助木子采纳,获得10
14秒前
16秒前
对白完成签到 ,获得积分10
17秒前
纯情的严青完成签到,获得积分10
17秒前
李浩然发布了新的文献求助10
17秒前
龙眼肉发布了新的文献求助30
17秒前
18秒前
Smile2044发布了新的文献求助30
19秒前
19秒前
20秒前
21秒前
22秒前
jnjfn完成签到,获得积分10
23秒前
zhangsudi发布了新的文献求助10
24秒前
木子发布了新的文献求助10
24秒前
25秒前
26秒前
26秒前
樊伟诚完成签到,获得积分10
26秒前
子谦发布了新的文献求助10
26秒前
阿冰应助大力日记本采纳,获得10
26秒前
繁荣的代秋完成签到 ,获得积分10
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240268
求助须知:如何正确求助?哪些是违规求助? 2885223
关于积分的说明 8237531
捐赠科研通 2553515
什么是DOI,文献DOI怎么找? 1381706
科研通“疑难数据库(出版商)”最低求助积分说明 649325
邀请新用户注册赠送积分活动 625009