Controlled Construction of Cobalt-Doped Carbon Nanofiber–Carbon Nanotubes as a Freestanding Interlayer for Advanced Lithium–Sulfur Batteries

多硫化物 材料科学 碳纳米纤维 碳纳米管 硫黄 化学工程 阴极 纳米纤维 碳纤维 纳米颗粒 锂硫电池 静电纺丝 锂(药物) 纳米技术 复合材料 电极 电化学 电解质 化学 复合数 医学 物理化学 内分泌学 工程类 冶金 聚合物
作者
Jia Liu,Huijie Zhang,Cheng Ma,Jitong Wang,Wenming Qiao,Licheng Ling
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (48): 45232-45244 被引量:2
标识
DOI:10.1021/acsomega.3c01851
摘要

The major challenges for the realistic application of lithium-sulfur batteries (LSBs) lie in the great difficulties in breaking through the obstacles of the sluggish kinetics and polysulfides shuttle of the sulfur cathode at high sulfur loading for continuous high sulfur utilization during prolonged charge-discharge cycles. Herein, cobalt-doped carbon nanofibers containing carbon nanotubes (Co@CNF-CNT) were prepared via electrospinning and chemical vapor deposition (CVD) methods while using polyacrylonitrile (PAN) as the carbon source and cobalt nanoparticles as the catalyst. The obtained uniform thickness film with high mechanical strength can be cut and used directly as a functional freestanding interlayer for LSBs. The appearance of one-dimensional "dendritic" carbon nanotubes on the surface of carbon nanofibers not only enhanced the capture ability of lithium polysulfide (LPSs) but also further improved the conductivity of the materials and increased the electron transport path for Li2S deposition. The results show that under the synergistic effect of porous structure, nitrogen doping, cobalt nanoparticles, and high-conductivity carbon nanotubes, the Co@CNF-CNT interlayer can effectively raise the polysulfide adsorption and conversion efficiency, and provide remarkable rate performance and excellent cycling stability even at high sulfur mass loading. The LSBs with Co@CNF-CNT interlayer have a discharge capacity of 656 mAh g-1 at a high rate of 3C, and the capacity decay rate at 1C after 1000 cycles was only 0.045% per cycle. When fitted with a high sulfur loading cathode of 5.3 mg cm-2, the battery could still maintain a discharge capacity as high as 0.045% mAh g-1 after 70 cycles at 0.2C.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助66采纳,获得10
1秒前
星辰大海应助小李在读研采纳,获得10
2秒前
善学以致用应助乐乐妈采纳,获得10
3秒前
酷酷学发布了新的文献求助10
3秒前
3秒前
huma发布了新的文献求助10
4秒前
wtg完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
JamesPei应助cctoday采纳,获得10
6秒前
friend516完成签到,获得积分10
6秒前
7秒前
sakiko完成签到 ,获得积分10
8秒前
9秒前
俏皮的寻芹完成签到,获得积分20
9秒前
9秒前
qiao发布了新的文献求助10
9秒前
Iw_关注了科研通微信公众号
10秒前
卡司发布了新的文献求助20
10秒前
顾矜应助酷酷学采纳,获得10
10秒前
10秒前
10秒前
nkmenghan完成签到,获得积分10
11秒前
健壮书包发布了新的文献求助10
11秒前
感动煎饼发布了新的文献求助10
11秒前
Coady发布了新的文献求助10
12秒前
12秒前
wyx关注了科研通微信公众号
12秒前
科研通AI5应助精明秋采纳,获得10
12秒前
12秒前
传奇3应助血小板采纳,获得10
12秒前
ling完成签到 ,获得积分10
13秒前
Brave_1完成签到,获得积分10
13秒前
无聊的从霜完成签到 ,获得积分10
13秒前
Kikisman发布了新的文献求助10
13秒前
nkmenghan发布了新的文献求助10
14秒前
碎星发布了新的文献求助10
14秒前
脑洞疼应助张恒采纳,获得10
14秒前
14秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475079
求助须知:如何正确求助?哪些是违规求助? 3067046
关于积分的说明 9102348
捐赠科研通 2758386
什么是DOI,文献DOI怎么找? 1513636
邀请新用户注册赠送积分活动 699739
科研通“疑难数据库(出版商)”最低求助积分说明 699119