X-Tf-Gridnet: A Time-Frequency Domain Target Speaker Extraction Network with Adaptive Speaker Embedding Fusion

语音识别 说话人识别 说话人日记 计算机科学 融合 嵌入 说话人验证 领域(数学分析) 人工智能 数学 语言学 数学分析 哲学
作者
Fengyuan Hao,Xiaodong Li,Chengshi Zheng
标识
DOI:10.2139/ssrn.4611108
摘要

Target speaker extraction (TSE) which has the capability to directly extract desired speech given enrollment utterances of the target speaker has attracted more and more attention for its potential applications in solving the cocktail-party problem. Despite the considerable progress made by existing time-domain methods, which have become the dominant approach for TSE, these methods often significantly degrade their performance under more realistic conditions. This paper proposes an innovative approach in the time-frequency (T-F) domain, namely X-TF-GridNet, which uses complex spectrum mapping to extract the real and imaginary (RI) components of the target speech. Specifically, the TF-GridNet block was designed to serve as the primary speaker extractor module. Our proposed method boasts two key extensions: first, a U$^{2}$-Net style network adeptly extracts robust fixed speaker embeddings, which could efficiently capture and represent target speaker information. Second, an adaptive embedding fusion (AEA) mechanism ensures the effective utilization of target speaker information, which makes the backbone extractor focus on the speech of interest. Additionally, we also introduced a multi-task learning framework, comprising two distinct loss functions, to explicitly enhance both the discriminative speaker embeddings for the reference speech and the overall quality of the target speech. We conducted extensive ablation studies and quantitative comparisons against previous TSE methods on both the WSJ0-2mix and its noisy and reverberant counterparts. Our proposed method achieved a commendable SI-SDR of 19.7 dB with a moderate model size on the WSJ0-2mix dataset, and the SI-SDR can be improved to 20.7 dB with a larger model. Experimental results demonstrated that, compared with existing time-domain approaches, our proposed method not only achieved competitive performance across multiple objective metrics but also mitigated speaker confusion errors under more challenging conditions, including various interferences such as noises and reverberation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助研友_ZzrWKZ采纳,获得10
1秒前
科研通AI5应助WNL采纳,获得10
2秒前
2秒前
yiyi发布了新的文献求助10
3秒前
坚定的雁完成签到 ,获得积分10
3秒前
坤坤探花完成签到,获得积分20
3秒前
肯德鸭完成签到,获得积分10
5秒前
Zorion发布了新的文献求助10
5秒前
6秒前
李健应助健忘飞风采纳,获得10
6秒前
小李驳回了ding应助
6秒前
顾矜应助敏感草丛采纳,获得10
7秒前
科研通AI5应助LAZYj采纳,获得10
7秒前
7秒前
充电宝应助HT采纳,获得10
8秒前
8秒前
9秒前
luo完成签到,获得积分10
10秒前
10秒前
研友_ZzrWKZ完成签到,获得积分10
10秒前
三明治完成签到,获得积分10
11秒前
光亮鱼发布了新的文献求助10
11秒前
zhouleiwang完成签到,获得积分10
11秒前
11秒前
LIA完成签到 ,获得积分10
11秒前
11秒前
12秒前
李健的小迷弟应助张张采纳,获得10
13秒前
钮若翠完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
Jason举报冰激凌UP求助涉嫌违规
14秒前
研友_ZzrWKZ发布了新的文献求助10
14秒前
14秒前
SciGPT应助狄1234567采纳,获得10
15秒前
lan发布了新的文献求助10
15秒前
爆米花应助伯赏元彤采纳,获得10
15秒前
顾矜应助pp若若gg采纳,获得10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554335
求助须知:如何正确求助?哪些是违规求助? 3130201
关于积分的说明 9385418
捐赠科研通 2829388
什么是DOI,文献DOI怎么找? 1555477
邀请新用户注册赠送积分活动 726111
科研通“疑难数据库(出版商)”最低求助积分说明 715408