通量
激光诱导击穿光谱
激光器
化学
分析化学(期刊)
大气压等离子体
光谱学
等离子体
喷射(流体)
材料科学
光学
物理
色谱法
量子力学
热力学
作者
Weilun Gu,Zongyu Hou,Zhi Xing,Duixiong Sun,Jianxun Ji,Kaikai Kou,Yuzhou Song,Zhe Wang
出处
期刊:Talanta
[Elsevier]
日期:2023-10-01
卷期号:: 125356-125356
标识
DOI:10.1016/j.talanta.2023.125356
摘要
Minimizing sample damage is crucial in laser-induced breakdown spectroscopy (LIBS) for applications involving valuable samples and elemental mapping. In this study, we introduced a low-power atmospheric pressure plasma jet (APPJ) to reduce sample damage by obtaining LIBS signals at significantly lower laser fluences. The proposed technique, APPJ-assisted LIBS (APPJ-LIBS), utilized an argon APPJ to provide seed electrons and enhance the excitation. The APPJ was generated by a 10 kHz alternating current power supply and made contact with the surface of a brass sample at a 30° angle. An infrared nanosecond Nd:YAG laser was focused onto the contacting zone, allowing the resulting laser-induced plasma to evolve within the surrounding APPJ and produce optical emission. The optimized APPJ-LIBS system reduced the laser fluence threshold for spectral detection of the brass sample by 97 %, from 1.43 J/cm2 to 0.05 J/cm2, which represented the lowest laser fluence threshold reported in LIBS studies on copper-based materials. Micrographs of the sample surface showed no visible damage after the APPJ-LIBS measurement at a near-threshold laser fluence and an APPJ input power as low as 6.0 W. Furthermore, gated images showed the plasma evolution in APPJ-LIBS and confirmed the excitation capability of the APPJ for the laser-ablated materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI