Automatic Localization of the Pons and Vermis on Fetal Brain MR Imaging Using a U-Net Deep Learning Model

医学 小脑蚓部 置信区间 地标 放射科 核医学 解剖 人工智能 小脑 计算机科学 内科学
作者
Farzan Vahedifard,Xuchu Liu,Jubril O. Adepoju,Shouyuan Zhao,H. Asher Ai,Kranthi K. Marathu,Mark Supanich,Sharon E. Byrd,Jie Deng
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:44 (10): 1191-1200 被引量:1
标识
DOI:10.3174/ajnr.a7978
摘要

BACKGROUND AND PURPOSE:

An MRI of the fetus can enhance the identification of perinatal developmental disorders, which improves the accuracy of ultrasound. Manual MRI measurements require training, time, and intra-variability concerns. Pediatric neuroradiologists are also in short supply. Our purpose was developing a deep learning model and pipeline for automatically identifying anatomic landmarks on the pons and vermis in fetal brain MR imaging and suggesting suitable images for measuring the pons and vermis.

MATERIALS AND METHODS:

We retrospectively used 55 pregnant patients who underwent fetal brain MR imaging with a HASTE protocol. Pediatric neuroradiologists selected them for landmark annotation on sagittal single-shot T2-weighted images, and the clinically reliable method was used as the criterion standard for the measurement of the pons and vermis. A U-Net-based deep learning model was developed to automatically identify fetal brain anatomic landmarks, including the 2 anterior-posterior landmarks of the pons and 2 anterior-posterior and 2 superior-inferior landmarks of the vermis. Four-fold cross-validation was performed to test the accuracy of the model using randomly divided and sorted gestational age–divided data sets. A confidence score of model prediction was generated for each testing case.

RESULTS:

Overall, 85% of the testing results showed a ≥90% confidence, with a mean error of <2.22 mm, providing overall better estimation results with fewer errors and higher confidence scores. The anterior and posterior pons and anterior vermis showed better estimation (which means fewer errors in landmark localization) and accuracy and a higher confidence level than other landmarks. We also developed a graphic user interface for clinical use.

CONCLUSIONS:

This deep learning–facilitated pipeline practically shortens the time spent on selecting good-quality fetal brain images and performing anatomic measurements for radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
C2完成签到,获得积分10
刚刚
美丽思山发布了新的文献求助10
刚刚
jun发布了新的文献求助10
1秒前
173678发布了新的文献求助10
1秒前
1秒前
淡定的黑米完成签到,获得积分10
1秒前
1秒前
1秒前
飞哥完成签到 ,获得积分10
2秒前
2秒前
3秒前
spenley发布了新的文献求助10
3秒前
3秒前
友好的友绿完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
专注白昼完成签到,获得积分10
4秒前
脑洞疼应助hhh采纳,获得10
5秒前
5秒前
Glume发布了新的文献求助10
5秒前
ding应助王伊辰采纳,获得10
5秒前
jenkins完成签到,获得积分10
5秒前
cosz发布了新的文献求助10
5秒前
毛豆应助lucas采纳,获得10
5秒前
5秒前
呀咪关注了科研通微信公众号
5秒前
sjll发布了新的文献求助10
6秒前
yong完成签到 ,获得积分10
6秒前
爱听歌老1发布了新的文献求助10
6秒前
MOREMO完成签到,获得积分10
7秒前
长庚发布了新的文献求助10
7秒前
任性的小丸子完成签到,获得积分20
7秒前
hony发布了新的文献求助10
7秒前
8秒前
8秒前
害羞香菇完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4989498
求助须知:如何正确求助?哪些是违规求助? 4238780
关于积分的说明 13204012
捐赠科研通 4032918
什么是DOI,文献DOI怎么找? 2206393
邀请新用户注册赠送积分活动 1217687
关于科研通互助平台的介绍 1135821