Automatic Localization of the Pons and Vermis on Fetal Brain MR Imaging Using a U-Net Deep Learning Model

医学 小脑蚓部 置信区间 地标 放射科 核医学 解剖 人工智能 小脑 计算机科学 内科学
作者
Farzan Vahedifard,Xuchu Liu,Jubril O. Adepoju,Shouyuan Zhao,H. Asher Ai,Kranthi K. Marathu,Mark Supanich,Sharon E. Byrd,Jie Deng
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:44 (10): 1191-1200 被引量:1
标识
DOI:10.3174/ajnr.a7978
摘要

BACKGROUND AND PURPOSE:

An MRI of the fetus can enhance the identification of perinatal developmental disorders, which improves the accuracy of ultrasound. Manual MRI measurements require training, time, and intra-variability concerns. Pediatric neuroradiologists are also in short supply. Our purpose was developing a deep learning model and pipeline for automatically identifying anatomic landmarks on the pons and vermis in fetal brain MR imaging and suggesting suitable images for measuring the pons and vermis.

MATERIALS AND METHODS:

We retrospectively used 55 pregnant patients who underwent fetal brain MR imaging with a HASTE protocol. Pediatric neuroradiologists selected them for landmark annotation on sagittal single-shot T2-weighted images, and the clinically reliable method was used as the criterion standard for the measurement of the pons and vermis. A U-Net-based deep learning model was developed to automatically identify fetal brain anatomic landmarks, including the 2 anterior-posterior landmarks of the pons and 2 anterior-posterior and 2 superior-inferior landmarks of the vermis. Four-fold cross-validation was performed to test the accuracy of the model using randomly divided and sorted gestational age–divided data sets. A confidence score of model prediction was generated for each testing case.

RESULTS:

Overall, 85% of the testing results showed a ≥90% confidence, with a mean error of <2.22 mm, providing overall better estimation results with fewer errors and higher confidence scores. The anterior and posterior pons and anterior vermis showed better estimation (which means fewer errors in landmark localization) and accuracy and a higher confidence level than other landmarks. We also developed a graphic user interface for clinical use.

CONCLUSIONS:

This deep learning–facilitated pipeline practically shortens the time spent on selecting good-quality fetal brain images and performing anatomic measurements for radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CLK完成签到,获得积分10
1秒前
kdtaaaa完成签到,获得积分20
3秒前
4秒前
lu完成签到,获得积分10
6秒前
wycwkxjjya完成签到 ,获得积分10
7秒前
8秒前
8秒前
曾云璐发布了新的文献求助10
10秒前
Orange应助等待的谷波采纳,获得10
11秒前
12秒前
esyncoms发布了新的文献求助10
12秒前
zg发布了新的文献求助10
13秒前
UAU发布了新的文献求助10
13秒前
sha303270发布了新的文献求助10
18秒前
小二郎应助唧唧采纳,获得10
18秒前
18秒前
18秒前
19秒前
20秒前
梁三岁完成签到,获得积分10
22秒前
年轻的冰海完成签到,获得积分10
22秒前
TIMF14完成签到,获得积分10
23秒前
25秒前
清脆南蕾发布了新的文献求助10
25秒前
26秒前
28秒前
情怀应助bias采纳,获得10
30秒前
唧唧发布了新的文献求助10
30秒前
颜苏完成签到,获得积分10
31秒前
hm完成签到,获得积分10
31秒前
文艺夏青完成签到,获得积分10
33秒前
33秒前
35秒前
111咩咩完成签到,获得积分10
37秒前
37秒前
gnufgg完成签到,获得积分10
39秒前
文艺夏青发布了新的文献求助10
40秒前
Irene完成签到 ,获得积分10
40秒前
SC关闭了SC文献求助
41秒前
丘比特应助zg采纳,获得10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967279
求助须知:如何正确求助?哪些是违规求助? 3512575
关于积分的说明 11164253
捐赠科研通 3247522
什么是DOI,文献DOI怎么找? 1793850
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804495