亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Localization of the Pons and Vermis on Fetal Brain MR Imaging Using a U-Net Deep Learning Model

医学 小脑蚓部 置信区间 地标 放射科 核医学 解剖 人工智能 小脑 计算机科学 内科学
作者
Farzan Vahedifard,Xuchu Liu,Jubril O. Adepoju,Shouyuan Zhao,H. Asher Ai,Kranthi K. Marathu,Mark Supanich,Sharon E. Byrd,Jie Deng
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:44 (10): 1191-1200 被引量:1
标识
DOI:10.3174/ajnr.a7978
摘要

BACKGROUND AND PURPOSE:

An MRI of the fetus can enhance the identification of perinatal developmental disorders, which improves the accuracy of ultrasound. Manual MRI measurements require training, time, and intra-variability concerns. Pediatric neuroradiologists are also in short supply. Our purpose was developing a deep learning model and pipeline for automatically identifying anatomic landmarks on the pons and vermis in fetal brain MR imaging and suggesting suitable images for measuring the pons and vermis.

MATERIALS AND METHODS:

We retrospectively used 55 pregnant patients who underwent fetal brain MR imaging with a HASTE protocol. Pediatric neuroradiologists selected them for landmark annotation on sagittal single-shot T2-weighted images, and the clinically reliable method was used as the criterion standard for the measurement of the pons and vermis. A U-Net-based deep learning model was developed to automatically identify fetal brain anatomic landmarks, including the 2 anterior-posterior landmarks of the pons and 2 anterior-posterior and 2 superior-inferior landmarks of the vermis. Four-fold cross-validation was performed to test the accuracy of the model using randomly divided and sorted gestational age–divided data sets. A confidence score of model prediction was generated for each testing case.

RESULTS:

Overall, 85% of the testing results showed a ≥90% confidence, with a mean error of <2.22 mm, providing overall better estimation results with fewer errors and higher confidence scores. The anterior and posterior pons and anterior vermis showed better estimation (which means fewer errors in landmark localization) and accuracy and a higher confidence level than other landmarks. We also developed a graphic user interface for clinical use.

CONCLUSIONS:

This deep learning–facilitated pipeline practically shortens the time spent on selecting good-quality fetal brain images and performing anatomic measurements for radiologists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cmqq发布了新的文献求助10
2秒前
wrry完成签到,获得积分10
3秒前
情怀应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
陶醉的烤鸡完成签到 ,获得积分10
8秒前
丘比特应助Cmqq采纳,获得10
12秒前
18秒前
21秒前
小年小少发布了新的文献求助10
21秒前
Dr. Chen发布了新的文献求助10
24秒前
令狐冲完成签到 ,获得积分10
24秒前
Cassiel完成签到,获得积分10
27秒前
hahahan完成签到 ,获得积分10
30秒前
上官若男应助Passion采纳,获得10
40秒前
41秒前
lll完成签到 ,获得积分10
42秒前
wrry发布了新的文献求助10
46秒前
49秒前
桃桃发布了新的文献求助30
51秒前
Passion发布了新的文献求助10
53秒前
ww完成签到 ,获得积分10
1分钟前
绿毛怪完成签到,获得积分10
1分钟前
桃桃完成签到,获得积分10
1分钟前
1分钟前
昵称已挥发发布了新的文献求助200
1分钟前
优美紫槐应助满意的世界采纳,获得100
1分钟前
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
科研通AI6应助满意的世界采纳,获得20
1分钟前
2分钟前
ding应助Cmqq采纳,获得10
2分钟前
2分钟前
2分钟前
Krim完成签到 ,获得积分0
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599747
求助须知:如何正确求助?哪些是违规求助? 4685478
关于积分的说明 14838528
捐赠科研通 4670257
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898