Automatic Localization of the Pons and Vermis on Fetal Brain MR Imaging Using a U-Net Deep Learning Model

医学 小脑蚓部 置信区间 地标 放射科 核医学 解剖 人工智能 小脑 计算机科学 内科学
作者
Farzan Vahedifard,Xuchu Liu,Jubril O. Adepoju,Shouyuan Zhao,H. Asher Ai,Kranthi K. Marathu,Mark Supanich,Sharon E. Byrd,Jie Deng
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:44 (10): 1191-1200 被引量:1
标识
DOI:10.3174/ajnr.a7978
摘要

BACKGROUND AND PURPOSE:

An MRI of the fetus can enhance the identification of perinatal developmental disorders, which improves the accuracy of ultrasound. Manual MRI measurements require training, time, and intra-variability concerns. Pediatric neuroradiologists are also in short supply. Our purpose was developing a deep learning model and pipeline for automatically identifying anatomic landmarks on the pons and vermis in fetal brain MR imaging and suggesting suitable images for measuring the pons and vermis.

MATERIALS AND METHODS:

We retrospectively used 55 pregnant patients who underwent fetal brain MR imaging with a HASTE protocol. Pediatric neuroradiologists selected them for landmark annotation on sagittal single-shot T2-weighted images, and the clinically reliable method was used as the criterion standard for the measurement of the pons and vermis. A U-Net-based deep learning model was developed to automatically identify fetal brain anatomic landmarks, including the 2 anterior-posterior landmarks of the pons and 2 anterior-posterior and 2 superior-inferior landmarks of the vermis. Four-fold cross-validation was performed to test the accuracy of the model using randomly divided and sorted gestational age–divided data sets. A confidence score of model prediction was generated for each testing case.

RESULTS:

Overall, 85% of the testing results showed a ≥90% confidence, with a mean error of <2.22 mm, providing overall better estimation results with fewer errors and higher confidence scores. The anterior and posterior pons and anterior vermis showed better estimation (which means fewer errors in landmark localization) and accuracy and a higher confidence level than other landmarks. We also developed a graphic user interface for clinical use.

CONCLUSIONS:

This deep learning–facilitated pipeline practically shortens the time spent on selecting good-quality fetal brain images and performing anatomic measurements for radiologists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gu完成签到,获得积分20
刚刚
Ryan发布了新的文献求助10
刚刚
1秒前
天天快乐应助苦涩油麦菜采纳,获得10
1秒前
薯片发布了新的文献求助10
2秒前
2秒前
3秒前
小蘑菇应助啾啾采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
研友_Z30Kz8完成签到,获得积分10
4秒前
旭东静静完成签到,获得积分10
4秒前
4秒前
健忘的网络应助HJJHJH采纳,获得10
4秒前
yjq0103完成签到,获得积分10
4秒前
znn发布了新的文献求助10
4秒前
充电宝应助Shens采纳,获得10
4秒前
HE完成签到,获得积分10
5秒前
sinlar发布了新的文献求助10
6秒前
6秒前
魔幻的雁发布了新的文献求助10
7秒前
谦让的靖巧完成签到,获得积分10
7秒前
田様应助Chunlan采纳,获得30
8秒前
阿珊完成签到,获得积分10
9秒前
9秒前
Zhao0112发布了新的文献求助10
9秒前
牛马发布了新的文献求助10
9秒前
妍好123应助EnJay0528采纳,获得10
10秒前
xide完成签到,获得积分10
10秒前
科研通AI6.1应助悦耳从筠采纳,获得10
11秒前
11秒前
WXR完成签到,获得积分10
11秒前
11秒前
黑咖喱完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
buer完成签到,获得积分10
12秒前
12秒前
故事完成签到,获得积分10
12秒前
LIN发布了新的文献求助10
12秒前
12秒前
畅学天下发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783962
求助须知:如何正确求助?哪些是违规求助? 5680156
关于积分的说明 15462775
捐赠科研通 4913312
什么是DOI,文献DOI怎么找? 2644592
邀请新用户注册赠送积分活动 1592399
关于科研通互助平台的介绍 1547026