Automatic Localization of the Pons and Vermis on Fetal Brain MR Imaging Using a U-Net Deep Learning Model

医学 小脑蚓部 置信区间 地标 放射科 核医学 解剖 人工智能 小脑 计算机科学 内科学
作者
Farzan Vahedifard,Xuchu Liu,Jubril O. Adepoju,Shouyuan Zhao,H. Asher Ai,Kranthi K. Marathu,Mark Supanich,Sharon E. Byrd,Jie Deng
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:44 (10): 1191-1200 被引量:1
标识
DOI:10.3174/ajnr.a7978
摘要

BACKGROUND AND PURPOSE:

An MRI of the fetus can enhance the identification of perinatal developmental disorders, which improves the accuracy of ultrasound. Manual MRI measurements require training, time, and intra-variability concerns. Pediatric neuroradiologists are also in short supply. Our purpose was developing a deep learning model and pipeline for automatically identifying anatomic landmarks on the pons and vermis in fetal brain MR imaging and suggesting suitable images for measuring the pons and vermis.

MATERIALS AND METHODS:

We retrospectively used 55 pregnant patients who underwent fetal brain MR imaging with a HASTE protocol. Pediatric neuroradiologists selected them for landmark annotation on sagittal single-shot T2-weighted images, and the clinically reliable method was used as the criterion standard for the measurement of the pons and vermis. A U-Net-based deep learning model was developed to automatically identify fetal brain anatomic landmarks, including the 2 anterior-posterior landmarks of the pons and 2 anterior-posterior and 2 superior-inferior landmarks of the vermis. Four-fold cross-validation was performed to test the accuracy of the model using randomly divided and sorted gestational age–divided data sets. A confidence score of model prediction was generated for each testing case.

RESULTS:

Overall, 85% of the testing results showed a ≥90% confidence, with a mean error of <2.22 mm, providing overall better estimation results with fewer errors and higher confidence scores. The anterior and posterior pons and anterior vermis showed better estimation (which means fewer errors in landmark localization) and accuracy and a higher confidence level than other landmarks. We also developed a graphic user interface for clinical use.

CONCLUSIONS:

This deep learning–facilitated pipeline practically shortens the time spent on selecting good-quality fetal brain images and performing anatomic measurements for radiologists.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hanzhuziyan完成签到,获得积分10
1秒前
liuhaorana111_完成签到,获得积分20
2秒前
W星球Y族人完成签到,获得积分10
2秒前
2秒前
脑洞疼应助ZR666888采纳,获得10
3秒前
日月归尘完成签到,获得积分10
3秒前
啵啵龙发布了新的文献求助10
6秒前
沉默棉花糖完成签到,获得积分10
7秒前
鹏程应助拼搏君浩采纳,获得10
8秒前
9秒前
老马哥完成签到 ,获得积分0
9秒前
明月念斯人完成签到 ,获得积分10
11秒前
11秒前
淡然冬灵应助锅铲采纳,获得20
12秒前
Rabbit完成签到 ,获得积分10
14秒前
14秒前
现代书雪发布了新的文献求助10
15秒前
宁霸完成签到,获得积分0
16秒前
deniroming完成签到,获得积分0
20秒前
Jasper应助ZR666888采纳,获得10
21秒前
一行完成签到,获得积分10
21秒前
壮观小懒虫完成签到 ,获得积分10
22秒前
勤恳洙应助现代书雪采纳,获得30
26秒前
32秒前
嘿嘿应助科研通管家采纳,获得10
32秒前
在水一方应助科研通管家采纳,获得10
32秒前
桐桐应助刘慧鑫采纳,获得10
32秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
32秒前
充电宝应助科研通管家采纳,获得10
32秒前
斯文败类应助科研通管家采纳,获得10
32秒前
bkagyin应助科研通管家采纳,获得10
32秒前
33秒前
现代书雪完成签到,获得积分20
35秒前
36秒前
跳跃小伙完成签到 ,获得积分10
37秒前
37秒前
123345发布了新的文献求助10
38秒前
39秒前
zyyao发布了新的文献求助20
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868245
求助须知:如何正确求助?哪些是违规求助? 6439836
关于积分的说明 15658050
捐赠科研通 4983670
什么是DOI,文献DOI怎么找? 2687581
邀请新用户注册赠送积分活动 1630242
关于科研通互助平台的介绍 1588346