清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modeling and monitoring multilayer attributed weighted directed networks via a generative model

计算机科学 图表 数据挖掘 生成模型 网络模型 贝叶斯定理 最大化 序列(生物学) 算法 机器学习 人工智能 生成语法 数学优化 统计 数学 贝叶斯概率 生物 遗传学
作者
Hao Wu,Qiao Liang,Kaibo Wang
出处
期刊:IISE transactions [Informa]
卷期号:: 1-13
标识
DOI:10.1080/24725854.2023.2256369
摘要

AbstractAs data with network structures are widely seen in diverse applications, the modeling and monitoring of network data have drawn considerable attention in recent years. When individuals in a network have multiple types of interactions, a multilayer network model should be considered to better characterize its behavior. Most existing network models have concentrated on characterizing the topological structure among individuals, and important attributes of individuals are largely disregarded in existing works. In this article, first, we propose a unified static Network Generative Model (static-NGM), which incorporates individual attributes in network topology modeling. The proposed model can be utilized for a general multilayer network with weighted and directed edges. A variational expectation maximization algorithm is developed to estimate model parameters. Second, to characterize the time-dependent property of a network sequence and perform network monitoring, we extend the static-NGM model to a sequential version, namely, the sequential-NGM model, with the Markov assumption. Last, a sequential-NGM chart is developed to detect shifts and identify root causes of shifts in a network sequence. Extensive simulation experiments show that considering attributes improves the parameter estimation accuracy and that the proposed monitoring method also outperforms the three competitive approaches, static-NGM chart, score test-based chart (ST chart) and Bayes factor-based chart (BF chart), in both shift detection and root cause diagnosis. We also perform a case study with Enron E-mail data; the results further validate the proposed method.Keywords: Generative modelmultilayer attributed networkroot cause diagnosisstatistical process control AcknowledgmentsThe authors greatly thank the Department Editor, the Associate Editor and anonymous referees for their helpful comments and suggestions, which have helped us improve this work greatly.Data availability statementThe data that support the findings of this study are openly available at http://www.cs.cmu.edu/∼enron/Additional informationFundingDr. Wang’s work was supported by the Key Program of the National Natural Science Foundation of China under Grant No. 71932006. Dr. Liang’s work was supported by the National Natural Science Foundation of China under Grant No. 72201212.Notes on contributorsHao WuHao Wu is currently a PhD student at Department of Industrial Engineering, Tsinghua University. He received his BS degree in industrial engineering from Tsinghua University in 2021. His research focuses on network system modeling and monitoring.Qiao LiangQiao Liang is currently an assistant professor in the School of Statistics, Southwestern University of Finance and Economics, Chengdu, China. She received her PhD and BS degrees in industrial engineering from Tsinghua University, Beijing, China. Her research interests are in the areas of statistical modeling and data analytics for manufacturing and service processes, with a focus on statistical process control based on text analytics.Kaibo WangKaibo Wang is a professor in the Department of Industrial Engineering, jointly appointed by the Vanke School of Public Health, Tsinghua University, Beijing, China. He received his BS and MS degrees in mechatronics from Xi’an Jiaotong University, Xi’an, China, and his PhD in industrial engineering and engineering management from the Hong Kong University of Science and Technology, Hong Kong. His research focuses on statistical quality control and data-driven system modelling, monitoring, diagnosis, and control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是猪不是猫完成签到,获得积分10
11秒前
JL完成签到 ,获得积分10
18秒前
Hasee完成签到 ,获得积分10
21秒前
Singularity举报繁馥然求助涉嫌违规
1分钟前
1分钟前
阿巴完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
CodeCraft应助lll采纳,获得10
2分钟前
Jenny发布了新的文献求助10
2分钟前
隐形曼青应助石乘云采纳,获得10
2分钟前
2分钟前
hh完成签到 ,获得积分10
3分钟前
DJ_Tokyo完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
石乘云发布了新的文献求助10
3分钟前
草木完成签到,获得积分10
3分钟前
Singularity应助帮帮我好吗采纳,获得10
3分钟前
大轩完成签到 ,获得积分10
4分钟前
唐画完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
还单身的绝山完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
Singularity完成签到,获得积分0
5分钟前
DQ1175完成签到 ,获得积分10
5分钟前
王治豪发布了新的文献求助10
5分钟前
小二郎应助帮帮我好吗采纳,获得10
5分钟前
vbnn完成签到 ,获得积分10
6分钟前
lovexa完成签到,获得积分10
6分钟前
6分钟前
arsenal完成签到 ,获得积分10
6分钟前
研友_VZG7GZ应助Jenny采纳,获得10
6分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137034
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784270
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999