Classifying Urban Functional Zones by Integrating POIs, Place2vec, and LDA

潜在Dirichlet分配 计算机科学 兴趣点 北京 代表(政治) 数据挖掘 人工智能 主题模型 情报检索 地理 考古 政治 法学 政治学 中国
作者
Xin Yang,Yilai Yang,Xinqi Zheng
出处
期刊:Journal of urban planning and development [American Society of Civil Engineers]
卷期号:149 (4) 被引量:5
标识
DOI:10.1061/jupddm.upeng-4541
摘要

The urban functional zone (UFZ) is a basic unit of urban management and eco-environmental research. The study of the UFZ classification has been given more and more attention. In these studies, points of interest (POIs) are important and outstanding data, and both their semantic information and local spatial relationship information are important for the classification of UFZs. Many studies use the semantic information or local spatial relationship information of POIs for the UFZ classification, but owing to the lack of available models, only a few studies consider both of them. Combining POIs, Place2vec, and Latent Dirichlet Allocation (LDA) models, this paper proposes a new UFZ classification model that combines the semantic information and the local spatial relationship information of POIs. First, the principle and implementation of the model was described. Then the proposed model was applied to classify the UFZs of an experimental area (Chaoyang, a district of Beijing). By analyzing with manual interpretation results, accuracy of the classification results manifested that the model is useful for UFZ classification. By comparing the classification result of the proposed model with those of the Place2vec model and the LDA model, the advantage of this model was shown. Compared with the Place2vec model, this model integrates the semantic information of POIs into the representation of UFZs through the integration of the LDA model, thus improving the classification accuracy of UFZs. Compared with the LDA model, this model integrates the local spatial relationships of POIs into the representation of UFZs through the integration of the Place2vec model, thus improving the classification accuracy of UFZs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助呆萌的太阳采纳,获得10
1秒前
1秒前
2秒前
shunshun122发布了新的文献求助10
2秒前
orixero应助王花花采纳,获得10
4秒前
hanyang965发布了新的文献求助10
5秒前
NexusExplorer应助辛勤太阳采纳,获得10
9秒前
9秒前
volvoamg发布了新的文献求助10
10秒前
sdsadsad完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
Emma发布了新的文献求助30
13秒前
aub发布了新的文献求助10
14秒前
15秒前
峰1992发布了新的文献求助10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
从容芮应助科研通管家采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
Lucas应助果汁橡皮糖采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得20
17秒前
Orange应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
18秒前
wrl2023发布了新的文献求助10
18秒前
研友_ZbM2qn应助科研通管家采纳,获得20
18秒前
一只松子发布了新的文献求助10
18秒前
传奇3应助科研通管家采纳,获得20
18秒前
哪位发布了新的文献求助10
18秒前
shunshun122完成签到,获得积分20
18秒前
18秒前
18秒前
酷波er应助科研通管家采纳,获得30
18秒前
18秒前
明理的雪瑶完成签到,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310539
求助须知:如何正确求助?哪些是违规求助? 2943392
关于积分的说明 8514589
捐赠科研通 2618688
什么是DOI,文献DOI怎么找? 1431326
科研通“疑难数据库(出版商)”最低求助积分说明 664442
邀请新用户注册赠送积分活动 649626