亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer

计算机科学 迭代重建 人工智能 残余物 投影(关系代数) 卷积(计算机科学) 背景(考古学) 计算机视觉 卷积神经网络 模式识别(心理学) 算法 人工神经网络 生物 古生物学
作者
Yu Li,Xueqin Sun,Sukai Wang,Xuru Li,Yingwei Qin,Jinxiao Pan,Ping Chen
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (9): 095019-095019 被引量:18
标识
DOI:10.1088/1361-6560/acc2ab
摘要

Objective.Sparse-view computed tomography (SVCT), which can reduce the radiation doses administered to patients and hasten data acquisition, has become an area of particular interest to researchers. Most existing deep learning-based image reconstruction methods are based on convolutional neural networks (CNNs). Due to the locality of convolution and continuous sampling operations, existing approaches cannot fully model global context feature dependencies, which makes the CNN-based approaches less efficient in modeling the computed tomography (CT) images with various structural information.Approach.To overcome the above challenges, this paper develops a novel multi-domain optimization network based on convolution and swin transformer (MDST). MDST uses swin transformer block as the main building block in both projection (residual) domain and image (residual) domain sub-networks, which models global and local features of the projections and reconstructed images. MDST consists of two modules for initial reconstruction and residual-assisted reconstruction, respectively. The sparse sinogram is first expanded in the initial reconstruction module with a projection domain sub-network. Then, the sparse-view artifacts are effectively suppressed by an image domain sub-network. Finally, the residual assisted reconstruction module to correct the inconsistency of the initial reconstruction, further preserving image details.Main results. Extensive experiments on CT lymph node datasets and real walnut datasets show that MDST can effectively alleviate the loss of fine details caused by information attenuation and improve the reconstruction quality of medical images.Significance.MDST network is robust and can effectively reconstruct images with different noise level projections. Different from the current prevalent CNN-based networks, MDST uses transformer as the main backbone, which proves the potential of transformer in SVCT reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
89757完成签到 ,获得积分10
2秒前
9秒前
14秒前
阿正嗖啪发布了新的文献求助10
20秒前
20秒前
25秒前
无闻发布了新的文献求助10
26秒前
cj完成签到 ,获得积分10
29秒前
风景园林发布了新的文献求助10
29秒前
29秒前
天天天晴完成签到 ,获得积分10
31秒前
阿正嗖啪发布了新的文献求助10
34秒前
39秒前
无闻完成签到,获得积分10
41秒前
852应助nobody12004采纳,获得30
47秒前
49秒前
50秒前
51秒前
清爽冬莲完成签到 ,获得积分0
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
Criminology34应助科研通管家采纳,获得10
52秒前
Ava应助科研通管家采纳,获得10
52秒前
ceeray23应助科研通管家采纳,获得10
52秒前
52秒前
世良发布了新的文献求助10
56秒前
SZ发布了新的文献求助100
56秒前
Mufreh应助cccc采纳,获得10
59秒前
小马甲应助世良采纳,获得10
1分钟前
1分钟前
1分钟前
Anlocia发布了新的文献求助10
1分钟前
pipashu应助cccc采纳,获得10
1分钟前
Owen应助务实的犀牛采纳,获得10
1分钟前
优美的小笨蛋应助gulmira采纳,获得10
1分钟前
SZ完成签到,获得积分10
1分钟前
cccc完成签到,获得积分10
1分钟前
赫连涵柏完成签到,获得积分0
1分钟前
Jiong发布了新的文献求助30
1分钟前
1分钟前
zhnn完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650722
求助须知:如何正确求助?哪些是违规求助? 4781542
关于积分的说明 15052547
捐赠科研通 4809550
什么是DOI,文献DOI怎么找? 2572377
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487367