亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer

计算机科学 迭代重建 人工智能 残余物 投影(关系代数) 卷积(计算机科学) 背景(考古学) 计算机视觉 卷积神经网络 模式识别(心理学) 算法 人工神经网络 生物 古生物学
作者
Yu Li,Xueqin Sun,Sukai Wang,Xuru Li,Yingwei Qin,Jinxiao Pan,Ping Chen
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (9): 095019-095019 被引量:12
标识
DOI:10.1088/1361-6560/acc2ab
摘要

Objective.Sparse-view computed tomography (SVCT), which can reduce the radiation doses administered to patients and hasten data acquisition, has become an area of particular interest to researchers. Most existing deep learning-based image reconstruction methods are based on convolutional neural networks (CNNs). Due to the locality of convolution and continuous sampling operations, existing approaches cannot fully model global context feature dependencies, which makes the CNN-based approaches less efficient in modeling the computed tomography (CT) images with various structural information.Approach.To overcome the above challenges, this paper develops a novel multi-domain optimization network based on convolution and swin transformer (MDST). MDST uses swin transformer block as the main building block in both projection (residual) domain and image (residual) domain sub-networks, which models global and local features of the projections and reconstructed images. MDST consists of two modules for initial reconstruction and residual-assisted reconstruction, respectively. The sparse sinogram is first expanded in the initial reconstruction module with a projection domain sub-network. Then, the sparse-view artifacts are effectively suppressed by an image domain sub-network. Finally, the residual assisted reconstruction module to correct the inconsistency of the initial reconstruction, further preserving image details.Main results. Extensive experiments on CT lymph node datasets and real walnut datasets show that MDST can effectively alleviate the loss of fine details caused by information attenuation and improve the reconstruction quality of medical images.Significance.MDST network is robust and can effectively reconstruct images with different noise level projections. Different from the current prevalent CNN-based networks, MDST uses transformer as the main backbone, which proves the potential of transformer in SVCT reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
团团完成签到 ,获得积分10
6秒前
Jasper应助linkman采纳,获得10
8秒前
天天快乐应助linkman采纳,获得30
17秒前
黙宇循光完成签到 ,获得积分10
19秒前
追三完成签到 ,获得积分10
21秒前
温暖笑容发布了新的文献求助10
30秒前
36秒前
温暖笑容完成签到,获得积分10
42秒前
wackykao完成签到 ,获得积分10
42秒前
汉堡包应助linkman采纳,获得30
43秒前
45秒前
46秒前
CC完成签到,获得积分10
47秒前
CC发布了新的文献求助10
49秒前
hilton完成签到,获得积分10
54秒前
xiaoya完成签到,获得积分20
55秒前
善学以致用应助CC采纳,获得10
55秒前
58秒前
xiaojia0501完成签到,获得积分10
59秒前
xiaojia0501发布了新的文献求助10
1分钟前
脑洞疼应助松松果采纳,获得10
1分钟前
健壮的花瓣完成签到 ,获得积分10
1分钟前
1分钟前
手打鱼丸完成签到 ,获得积分10
1分钟前
打打应助linkman采纳,获得10
1分钟前
HMR完成签到 ,获得积分10
1分钟前
自由的无色完成签到 ,获得积分10
1分钟前
1分钟前
sarah完成签到,获得积分10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
大大大应助科研通管家采纳,获得10
1分钟前
喂喂发布了新的文献求助10
1分钟前
1分钟前
Hello应助linkman采纳,获得10
1分钟前
松松果发布了新的文献求助10
1分钟前
1分钟前
wmj完成签到,获得积分20
1分钟前
轻松的惜芹给沉静安荷的求助进行了留言
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532049
关于积分的说明 11256153
捐赠科研通 3270925
什么是DOI,文献DOI怎么找? 1805123
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216