MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer

计算机科学 迭代重建 人工智能 残余物 投影(关系代数) 卷积(计算机科学) 背景(考古学) 计算机视觉 卷积神经网络 模式识别(心理学) 算法 人工神经网络 古生物学 生物
作者
Yu Li,Xueqin Sun,Sukai Wang,Xuru Li,Yingwei Qin,Jinxiao Pan,Ping Chen
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (9): 095019-095019 被引量:12
标识
DOI:10.1088/1361-6560/acc2ab
摘要

Objective.Sparse-view computed tomography (SVCT), which can reduce the radiation doses administered to patients and hasten data acquisition, has become an area of particular interest to researchers. Most existing deep learning-based image reconstruction methods are based on convolutional neural networks (CNNs). Due to the locality of convolution and continuous sampling operations, existing approaches cannot fully model global context feature dependencies, which makes the CNN-based approaches less efficient in modeling the computed tomography (CT) images with various structural information.Approach.To overcome the above challenges, this paper develops a novel multi-domain optimization network based on convolution and swin transformer (MDST). MDST uses swin transformer block as the main building block in both projection (residual) domain and image (residual) domain sub-networks, which models global and local features of the projections and reconstructed images. MDST consists of two modules for initial reconstruction and residual-assisted reconstruction, respectively. The sparse sinogram is first expanded in the initial reconstruction module with a projection domain sub-network. Then, the sparse-view artifacts are effectively suppressed by an image domain sub-network. Finally, the residual assisted reconstruction module to correct the inconsistency of the initial reconstruction, further preserving image details.Main results. Extensive experiments on CT lymph node datasets and real walnut datasets show that MDST can effectively alleviate the loss of fine details caused by information attenuation and improve the reconstruction quality of medical images.Significance.MDST network is robust and can effectively reconstruct images with different noise level projections. Different from the current prevalent CNN-based networks, MDST uses transformer as the main backbone, which proves the potential of transformer in SVCT reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
onestepcloser完成签到 ,获得积分10
1秒前
ZYK完成签到,获得积分10
2秒前
Transition发布了新的文献求助10
2秒前
Muse应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
rwang1105应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
4秒前
王chun完成签到,获得积分10
4秒前
彭于晏应助榴莲小胖采纳,获得10
5秒前
5秒前
大胆楷瑞发布了新的文献求助10
7秒前
7秒前
7秒前
哈哈发布了新的文献求助10
9秒前
今天很好明天会更好完成签到,获得积分10
10秒前
10秒前
Jasper应助momo采纳,获得10
10秒前
xuwan发布了新的文献求助10
11秒前
11秒前
yuyan发布了新的文献求助10
11秒前
12秒前
Transition完成签到,获得积分10
12秒前
春国应助Lucky采纳,获得10
12秒前
cach发布了新的文献求助10
12秒前
toosweet发布了新的文献求助20
13秒前
14秒前
无私万言发布了新的文献求助30
14秒前
无名老大应助pangpang采纳,获得30
16秒前
18秒前
大个应助九川采纳,获得30
20秒前
逃之姚姚完成签到 ,获得积分10
20秒前
Xiaoping完成签到 ,获得积分10
20秒前
21秒前
丘比特应助abc采纳,获得10
21秒前
bolter关注了科研通微信公众号
22秒前
wjz发布了新的文献求助10
23秒前
真一松发布了新的文献求助20
23秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348832
求助须知:如何正确求助?哪些是违规求助? 2975106
关于积分的说明 8667405
捐赠科研通 2655816
什么是DOI,文献DOI怎么找? 1454209
科研通“疑难数据库(出版商)”最低求助积分说明 673253
邀请新用户注册赠送积分活动 663680