DE-INTERACT: A machine-learning-based predictive tool for the drug-excipient interaction study during product development—Validation through paracetamol and vanillin as a case study

赋形剂 公共化学 机器学习 香兰素 人工智能 计算机科学 化学 色谱法 有机化学
作者
Swayamprakash Patel,Mehul Patel,Mangesh Kulkarni,Mruduka S. Patel
出处
期刊:International Journal of Pharmaceutics [Elsevier]
卷期号:637: 122839-122839 被引量:6
标识
DOI:10.1016/j.ijpharm.2023.122839
摘要

The compatibility of drugs with excipients plays a crucial role in the prospective stability of pharmaceutical formulations. Apart from real-time stability studies, conventional analytical tools like DSC, FTIR, NMR, and chromatography help identify the possibilities of drug-excipient interactions. Machine learning can assist in developing a predictive tool for drug-excipient incompatibility. In the present work, PubChem Fingerprint is employed as the descriptor of compounds that thoroughly represents the drug's and excipient's chemistry. The 881-bit binary fingerprints of each drug and excipient make 1762 inputs, and one categorical output makes an instance in the dataset. A dataset of more than 3500 instances of drugs and excipients is carefully selected from peer-reviewed research papers. Rigorous training of the Artificial Neural Network (ANN) model was performed with maximum validation accuracy, minimum validation loss, and maximum validation precision as the checkpoints. The machine learning model (DE-Interact) was trained, achieving training and validation accuracies of 0.9930 and 0.9161, respectively. The performance of the DE-Interact model was evaluated by confirming three incompatible predictions by conventional analytical tools. Paracetamol with vanillin, paracetamol with methylparaben, and brinzolamide with polyethyleneglycol are these instances which are predicted as incompatible by the DE-Interact. DSC, FTIR, HPTLC, and HPLC analysis confirm the prediction. The present work offers a reliable DE-Interact tool for quick referencing while selecting excipients in formulation design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
cjlinhunu发布了新的文献求助10
6秒前
白菜完成签到 ,获得积分0
10秒前
Chris完成签到,获得积分10
10秒前
典雅的夜安完成签到,获得积分10
11秒前
达达罗完成签到,获得积分10
12秒前
苹果小蜜蜂完成签到,获得积分10
12秒前
yy完成签到,获得积分10
13秒前
水逆消退完成签到,获得积分20
17秒前
体贴鸽子完成签到,获得积分10
18秒前
CY完成签到,获得积分10
27秒前
嫁个养熊猫的完成签到 ,获得积分10
29秒前
畅快的道之完成签到,获得积分10
29秒前
醉熏的伊完成签到,获得积分10
29秒前
shuogesama完成签到,获得积分10
45秒前
陶醉昊焱完成签到 ,获得积分10
45秒前
lewis完成签到 ,获得积分10
45秒前
tczw667完成签到,获得积分10
46秒前
46秒前
搜集达人应助科研通管家采纳,获得10
46秒前
猴子魏应助科研通管家采纳,获得20
46秒前
46秒前
46秒前
jerry完成签到,获得积分10
48秒前
dracovu发布了新的文献求助40
48秒前
一颗大树完成签到,获得积分10
52秒前
元谷雪应助研友_LJaXX8采纳,获得10
53秒前
1分钟前
啦啦啦完成签到 ,获得积分10
1分钟前
gro_ele完成签到,获得积分10
1分钟前
柒柒完成签到,获得积分10
1分钟前
Faith完成签到 ,获得积分10
1分钟前
传奇3应助大气的雪青采纳,获得10
1分钟前
开朗的汉堡完成签到,获得积分10
1分钟前
缓慢的灵枫完成签到,获得积分10
1分钟前
秋秋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Lynn发布了新的文献求助10
1分钟前
xiao发布了新的文献求助10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795845
捐赠科研通 2447059
什么是DOI,文献DOI怎么找? 1301553
科研通“疑难数据库(出版商)”最低求助积分说明 626274
版权声明 601176