Time-sensitive prediction of NO2 concentration in China using an ensemble machine learning model from multi-source data

可解释性 残余物 梯度升压 空气质量指数 计算机科学 集合预报 集成学习 Boosting(机器学习) 均方误差 机器学习 数据挖掘 人工智能 随机森林 统计 气象学 数学 算法 物理
作者
Chenliang Tao,Man Jia,Guoqiang Wang,Yuqiang Zhang,Qingzhu Zhang,Xianfeng Wang,Qiao Wang,Wenxing Wang
出处
期刊:Journal of Environmental Sciences-china [Elsevier]
卷期号:137: 30-40 被引量:12
标识
DOI:10.1016/j.jes.2023.02.026
摘要

Nitrogen dioxide (NO2) poses a critical potential risk to environmental quality and public health. A reliable machine learning (ML) forecasting framework will be useful to provide valuable information to support government decision-making. Based on the data from 1609 air quality monitors across China from 2014-2020, this study designed an ensemble ML model by integrating multiple types of spatial-temporal variables and three sub-models for time-sensitive prediction over a wide range. The ensemble ML model incorporates a residual connection to the gated recurrent unit (GRU) network and adopts the advantage of Transformer, extreme gradient boosting (XGBoost) and GRU with residual connection network, resulting in a 4.1%±1.0% lower root mean square error over XGBoost for the test results. The ensemble model shows great prediction performance, with coefficient of determination of 0.91, 0.86, and 0.77 for 1-hr, 3-hr, and 24-hr averages for the test results, respectively. In particular, this model has achieved excellent performance with low spatial uncertainty in Central, East, and North China, the major site-dense zones. Through the interpretability analysis based on the Shapley value for different temporal resolutions, we found that the contribution of atmospheric chemical processes is more important for hourly predictions compared with the daily scale predictions, while the impact of meteorological conditions would be ever-prominent for the latter. Compared with existing models for different spatiotemporal scales, the present model can be implemented at any air quality monitoring station across China to facilitate achieving rapid and dependable forecast of NO2, which will help developing effective control policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助qzaima采纳,获得10
刚刚
米兰达完成签到 ,获得积分0
1秒前
xg发布了新的文献求助10
3秒前
Loooong应助Ni采纳,获得10
4秒前
4秒前
WZ0904发布了新的文献求助10
4秒前
顾矜应助博ge采纳,获得10
6秒前
6秒前
Lotus发布了新的文献求助10
7秒前
8秒前
仁爱仙人掌完成签到,获得积分10
10秒前
ywang发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
ewqw关注了科研通微信公众号
13秒前
曦小蕊完成签到 ,获得积分10
13秒前
14秒前
15秒前
15秒前
奋斗灵波发布了新的文献求助10
15秒前
药学牛马发布了新的文献求助10
15秒前
15秒前
科研通AI5应助WZ0904采纳,获得10
16秒前
叶未晞yi发布了新的文献求助10
17秒前
ipeakkka发布了新的文献求助10
18秒前
Jzhang应助迷人的映雁采纳,获得10
18秒前
18秒前
zzz完成签到,获得积分10
19秒前
19秒前
小安发布了新的文献求助10
19秒前
20秒前
叶未晞yi完成签到,获得积分10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得30
22秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
kilig应助科研通管家采纳,获得10
23秒前
23秒前
华仔应助科研通管家采纳,获得30
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824