Time-sensitive prediction of NO2 concentration in China using an ensemble machine learning model from multi-source data

可解释性 残余物 梯度升压 空气质量指数 计算机科学 集合预报 集成学习 Boosting(机器学习) 均方误差 机器学习 数据挖掘 人工智能 随机森林 统计 气象学 数学 算法 物理
作者
Chenliang Tao,Man Jia,Guoqiang Wang,Yuqiang Zhang,Qingzhu Zhang,Xianfeng Wang,Qiao Wang,Wenxing Wang
出处
期刊:Journal of Environmental Sciences-china [Elsevier BV]
卷期号:137: 30-40 被引量:13
标识
DOI:10.1016/j.jes.2023.02.026
摘要

Nitrogen dioxide (NO2) poses a critical potential risk to environmental quality and public health. A reliable machine learning (ML) forecasting framework will be useful to provide valuable information to support government decision-making. Based on the data from 1609 air quality monitors across China from 2014-2020, this study designed an ensemble ML model by integrating multiple types of spatial-temporal variables and three sub-models for time-sensitive prediction over a wide range. The ensemble ML model incorporates a residual connection to the gated recurrent unit (GRU) network and adopts the advantage of Transformer, extreme gradient boosting (XGBoost) and GRU with residual connection network, resulting in a 4.1%±1.0% lower root mean square error over XGBoost for the test results. The ensemble model shows great prediction performance, with coefficient of determination of 0.91, 0.86, and 0.77 for 1-hr, 3-hr, and 24-hr averages for the test results, respectively. In particular, this model has achieved excellent performance with low spatial uncertainty in Central, East, and North China, the major site-dense zones. Through the interpretability analysis based on the Shapley value for different temporal resolutions, we found that the contribution of atmospheric chemical processes is more important for hourly predictions compared with the daily scale predictions, while the impact of meteorological conditions would be ever-prominent for the latter. Compared with existing models for different spatiotemporal scales, the present model can be implemented at any air quality monitoring station across China to facilitate achieving rapid and dependable forecast of NO2, which will help developing effective control policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
熊猫完成签到,获得积分0
1秒前
霸王龙完成签到,获得积分10
4秒前
无花果应助马上毕业采纳,获得10
6秒前
刘潼潼完成签到,获得积分10
8秒前
=.=完成签到,获得积分10
8秒前
9秒前
酷波er应助尊敬的芷卉采纳,获得10
10秒前
11秒前
科研通AI2S应助821108pan采纳,获得10
11秒前
无奈抽屉完成签到,获得积分10
11秒前
JL完成签到,获得积分10
12秒前
美少女壮士完成签到,获得积分10
14秒前
情红锐完成签到,获得积分10
14秒前
卓聪健发布了新的文献求助10
14秒前
16秒前
王鹏喆完成签到 ,获得积分10
16秒前
雾蓝完成签到,获得积分10
18秒前
李爱国应助美少女壮士采纳,获得10
18秒前
un完成签到,获得积分10
18秒前
19秒前
19秒前
小蘑菇应助糊涂的MJ采纳,获得10
20秒前
王鹏喆关注了科研通微信公众号
20秒前
马上毕业发布了新的文献求助10
20秒前
液氧发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
小吴同志发布了新的文献求助10
23秒前
25秒前
废话鱼完成签到 ,获得积分10
25秒前
26秒前
du关闭了du文献求助
27秒前
量子星尘发布了新的文献求助10
28秒前
博修发布了新的文献求助10
28秒前
jiachun完成签到,获得积分10
28秒前
Jasper应助单薄的南蕾采纳,获得10
29秒前
32秒前
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150