Self-supervised monocular depth estimation for gastrointestinal endoscopy

人工智能 计算机科学 计算机视觉 单眼 帧(网络) 公制(单位) 相似性(几何) 模式识别(心理学) 图像(数学) 电信 运营管理 经济
作者
Yuying Liu,Siyang Zuo
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:238: 107619-107619 被引量:6
标识
DOI:10.1016/j.cmpb.2023.107619
摘要

Background and objective: Gastrointestinal (GI) endoscopy represents a promising tool for GI cancer screening. However, the limited field of view and uneven skills of endoscopists make it remains difficult to accurately identify polyps and follow up on precancerous lesions under endoscopy. Estimating depth from GI endoscopic sequences is essential for a series of AI-assisted surgical techniques. Nonetheless, depth estimation algorithm of GI endoscopy is a challenging task due to the particularity of the environment and the limitation of datasets. In this paper, we propose a self-supervised monocular depth estimation method for GI endoscopy. Methods: A depth estimation network and a camera ego-motion estimation network are firstly constructed to obtain the depth information and pose information of the sequence respectively, and then the model is enabled to perform self-supervised training by calculating the multi-scale structural similarity with L1 norm (MS-SSIM+L1) loss function between the target frame and the reconstructed image as part of the loss of the training network. The MS-SSIM+L1 loss function is good for reserving high-frequency information and can maintain the invariance of brightness and color. Our model consists of the U-shape convolutional network with the dual-attention mechanism, which is beneficial to capture muti-scale contextual information, and greatly improves the accuracy of depth estimation. We evaluated our method qualitatively and quantitatively with different state-of-the-art methods. Results and conclusions: The experimental results manifest that our method has superior generality, achieving lower error metrics and higher accuracy metrics on both the UCL dataset and the Endoslam dataset. The proposed method has also been validated with clinical GI endoscopy, demonstrating the potential clinical value of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hathaway完成签到,获得积分10
刚刚
科研通AI2S应助阿桓采纳,获得10
1秒前
科研通AI5应助阿桓采纳,获得10
1秒前
newman完成签到,获得积分10
1秒前
我是老大应助qian采纳,获得10
4秒前
Owen应助养蚊子采纳,获得10
4秒前
zzx完成签到,获得积分10
5秒前
24豆完成签到,获得积分0
5秒前
科研通AI5应助机灵君浩采纳,获得10
5秒前
贾不可完成签到,获得积分10
5秒前
6秒前
香蕉真完成签到,获得积分10
6秒前
淡然觅荷完成签到 ,获得积分10
7秒前
李健应助周三采纳,获得10
8秒前
完美世界应助mmd采纳,获得10
8秒前
8秒前
Martin完成签到,获得积分10
9秒前
9秒前
sarash发布了新的文献求助10
11秒前
CY发布了新的文献求助10
12秒前
12秒前
bin发布了新的文献求助10
13秒前
汉堡包应助Arsenoma采纳,获得10
13秒前
FashionBoy应助顺利的源智采纳,获得10
14秒前
cxq完成签到 ,获得积分10
15秒前
今后应助ShuXU采纳,获得10
16秒前
赵润泽完成签到 ,获得积分10
16秒前
好名字发布了新的文献求助10
18秒前
CY完成签到,获得积分10
20秒前
20秒前
奥利奥完成签到,获得积分20
21秒前
22秒前
23秒前
千图发布了新的文献求助20
23秒前
李爱国应助bin采纳,获得10
24秒前
25秒前
26秒前
奥利奥发布了新的文献求助10
27秒前
科研通AI2S应助klb13采纳,获得10
28秒前
学术混子发布了新的文献求助10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557656
求助须知:如何正确求助?哪些是违规求助? 3132706
关于积分的说明 9398807
捐赠科研通 2832886
什么是DOI,文献DOI怎么找? 1557110
邀请新用户注册赠送积分活动 727082
科研通“疑难数据库(出版商)”最低求助积分说明 716189