行波
波速
数学
限制
非线性系统
边界(拓扑)
流行病模型
数学分析
不动点定理
边值问题
生物扩散
应用数学
物理
量子力学
机械工程
人口
人口学
社会学
工程类
作者
Weixin Wu,Wenhui Zhang
标识
DOI:10.1142/s1793524523500456
摘要
This paper investigates a nonlocal dispersal epidemic model under the multiple nonlocal distributed delays and nonlinear incidence effects. First, the minimal wave speed [Formula: see text] and the basic reproduction number [Formula: see text] are defined, which determine the existence of traveling wave solutions. Second, with the help of the upper and lower solutions, Schauder’s fixed point theorem, and limiting techniques, the traveling waves satisfying some asymptotic boundary conditions are discussed. Specifically, when [Formula: see text], for every speed [Formula: see text] there exists a traveling wave solution satisfying the boundary conditions, and there is no such traveling wave solution for any [Formula: see text] when [Formula: see text] or [Formula: see text] when [Formula: see text]. Finally, we analyze the effects of nonlocal time delay on the minimum wave speed.
科研通智能强力驱动
Strongly Powered by AbleSci AI