A Novel Structural Damage Detection Method via Multisensor Spatial–Temporal Graph-Based Features and Deep Graph Convolutional Network

计算机科学 模式识别(心理学) 图形 人工智能 卷积神经网络 特征提取 结构健康监测 拉普拉斯矩阵 工程类 理论计算机科学 结构工程
作者
Pengming Zhan,Xianrong Qin,Qing Zhang,Yuantao Sun
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:12
标识
DOI:10.1109/tim.2023.3238048
摘要

Structural damage detection plays an important part in structural health monitoring for engineering structures. However, monitored signals are easily polluted by noise and the damaged data are difficult to obtain. In this work, a novel structural damage detection approach using multisensor spatial–temporal graph-based features and deep graph convolutional networks (DGCNs) is presented. The spatial–temporal graph is constructed by the graph theory based on continuous wavelet transform (CWT) of vibration signals. Then, the multisensor spatial–temporal graph-based feature is extracted based on the Laplacian matrix derived from the spatial–temporal graph of the multisensor data. To overcome the limitation of small data size which obstructed the use of the artificial neural network and convolutional neural network, a DGCN is utilized to classify the damage type of the monitored structure. The extracted multisensor spatial–temporal graph-based feature vector is used to represent the node of the global graph as the input of the DGCN. The node with the same condition of the structure can be classified by using the well-trained DGCN. Experiments of the International Association for Structural Control (IASC)-American Society of Civil Engineers (ASCE) SHM benchmark structure and Qatar steel frame structure in the laboratory are performed to verify the effectiveness of the proposed approach. The experimental results show that the DGCN method can be used to detect structural damage by learning from the constructed global graphs. Comparative experiments demonstrate that the proposed approach performs better than the conventional approach, especially for the limited dataset and noise-polluted case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱卿5271发布了新的文献求助10
刚刚
小蘑菇应助牧紫菱采纳,获得10
1秒前
2秒前
2秒前
kaidi1发布了新的文献求助10
3秒前
青檬完成签到 ,获得积分10
4秒前
水静嫡给水静嫡的求助进行了留言
4秒前
硕shuo发布了新的文献求助10
5秒前
6秒前
CodeCraft应助xumengyu采纳,获得10
6秒前
8秒前
Jasper应助DDy10001采纳,获得10
8秒前
coolkid应助拼命十三娘采纳,获得10
8秒前
kiki发布了新的文献求助10
8秒前
9秒前
英俊的水彤完成签到 ,获得积分10
10秒前
10秒前
DD完成签到,获得积分10
11秒前
脑洞疼应助Polong采纳,获得10
11秒前
zmy完成签到 ,获得积分10
13秒前
13秒前
DDy10001完成签到,获得积分20
13秒前
13秒前
Jane完成签到,获得积分10
14秒前
14秒前
ddm发布了新的文献求助10
14秒前
牧紫菱发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
硕shuo完成签到,获得积分10
17秒前
DD发布了新的文献求助10
18秒前
Hao发布了新的文献求助10
18秒前
19秒前
疯狂的语兰完成签到,获得积分10
21秒前
22秒前
23秒前
范医生01完成签到,获得积分10
23秒前
科yt完成签到,获得积分10
23秒前
Polong发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956244
求助须知:如何正确求助?哪些是违规求助? 3502445
关于积分的说明 11107634
捐赠科研通 3233093
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802086