A Novel Structural Damage Detection Method via Multisensor Spatial–Temporal Graph-Based Features and Deep Graph Convolutional Network

计算机科学 模式识别(心理学) 图形 人工智能 卷积神经网络 特征提取 结构健康监测 拉普拉斯矩阵 工程类 理论计算机科学 结构工程
作者
Pengming Zhan,Xianrong Qin,Qing Zhang,Yuantao Sun
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:6
标识
DOI:10.1109/tim.2023.3238048
摘要

Structural damage detection plays an important part in structural health monitoring for engineering structures. However, monitored signals are easily polluted by noise and the damaged data are difficult to obtain. In this work, a novel structural damage detection approach using multisensor spatial–temporal graph-based features and deep graph convolutional networks (DGCNs) is presented. The spatial–temporal graph is constructed by the graph theory based on continuous wavelet transform (CWT) of vibration signals. Then, the multisensor spatial–temporal graph-based feature is extracted based on the Laplacian matrix derived from the spatial–temporal graph of the multisensor data. To overcome the limitation of small data size which obstructed the use of the artificial neural network and convolutional neural network, a DGCN is utilized to classify the damage type of the monitored structure. The extracted multisensor spatial–temporal graph-based feature vector is used to represent the node of the global graph as the input of the DGCN. The node with the same condition of the structure can be classified by using the well-trained DGCN. Experiments of the International Association for Structural Control (IASC)-American Society of Civil Engineers (ASCE) SHM benchmark structure and Qatar steel frame structure in the laboratory are performed to verify the effectiveness of the proposed approach. The experimental results show that the DGCN method can be used to detect structural damage by learning from the constructed global graphs. Comparative experiments demonstrate that the proposed approach performs better than the conventional approach, especially for the limited dataset and noise-polluted case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张宝发布了新的文献求助10
刚刚
刚刚
yuki完成签到,获得积分20
1秒前
1秒前
昭明完成签到,获得积分10
1秒前
2秒前
香蕉觅云应助YK采纳,获得10
2秒前
2秒前
桐桐应助adoretheall采纳,获得10
5秒前
哗啦啦啦啦啦啦啦完成签到,获得积分10
6秒前
Joel发布了新的文献求助10
6秒前
7秒前
lai发布了新的文献求助10
8秒前
愉快的哈密瓜完成签到,获得积分10
9秒前
高大的莞发布了新的文献求助10
9秒前
10秒前
SONG发布了新的文献求助10
11秒前
13秒前
13秒前
一年八篇sci完成签到,获得积分20
14秒前
缺了一口的巧克力蛋挞完成签到 ,获得积分10
16秒前
17秒前
17秒前
cyn发布了新的文献求助10
17秒前
淡然完成签到,获得积分10
19秒前
你好发布了新的文献求助10
19秒前
20秒前
1234发布了新的文献求助10
20秒前
24秒前
Owen应助踏实乐枫采纳,获得10
27秒前
menghuaxijie完成签到,获得积分20
27秒前
YK发布了新的文献求助10
28秒前
28秒前
30秒前
Freja完成签到,获得积分10
30秒前
淡然发布了新的文献求助10
30秒前
cdy发布了新的文献求助10
34秒前
34秒前
qqq完成签到 ,获得积分10
34秒前
kiki发布了新的文献求助10
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161515
求助须知:如何正确求助?哪些是违规求助? 2812855
关于积分的说明 7897372
捐赠科研通 2471768
什么是DOI,文献DOI怎么找? 1316137
科研通“疑难数据库(出版商)”最低求助积分说明 631193
版权声明 602112