Improved Hybrid Grey Wolf Optimization Algorithm Based on Dimension Learning-Based Hunting Search Strategy

粒子群优化 水准点(测量) 计算机科学 人口 算法 早熟收敛 数学优化 局部搜索(优化) 维数(图论) 均方误差 趋同(经济学) 最优化问题 职位(财务) 人工智能 机器学习 数学 统计 人口学 大地测量学 财务 社会学 经济增长 纯数学 经济 地理
作者
Chuanjing Zhang,Huanlao Liu,Qunlong Zhou,Can Liu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 13738-13753 被引量:12
标识
DOI:10.1109/access.2023.3240576
摘要

An improved hybrid grey wolf optimization algorithm (IHGWO) is proposed to solve the problem of population diversity, imbalance of exploration and development capabilities, and premature convergence. The algorithm benefits from particle swarm optimization and a dimension learning-based hunting search strategy. In the particle swarm algorithm search strategy, linear variable social learning and self-learning are introduced to improve the population’s ability to communicate information. The individual position, current iteration optimal position, and optimal population position of grey wolves are combined to update the individual position information, thus strengthening the communication between individuals and the population. In the dimension learning-based hunting search strategy, neighborhoods are built for each search member, and neighborhood members can share information, balance global and local searches, and maintain diversity. To validate the algorithm, 23 typical benchmark functions, CEC2022 benchmark functions, and engineering problem sinusoidal low-order-polynomial prediction of positioning error of numerical control machine tools are used to optimize the algorithm’s parameters. Results are compared with those from four other algorithms and analyzed using Friedman’s statistical test. Experimental and statistical tests reveal that the IHGWO algorithm has the best overall benchmark function rating, with an overall effectiveness of 87.23%. In the engineering parameter optimization problem, the mean square error, root mean square error, and goodness of fit of the prediction equation after IHGWO algorithm optimization are 95.3761, 9.7661, and 97.47%, respectively. These numerical values are superior to those of the compared algorithms, effectively demonstrating the comprehensive performance and applicability of the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小池同学发布了新的文献求助10
1秒前
1秒前
Yohann完成签到,获得积分10
2秒前
可爱的函函应助崔同学采纳,获得10
2秒前
科研小白发布了新的文献求助10
2秒前
何吉民完成签到,获得积分20
3秒前
球球发布了新的文献求助10
4秒前
唔西迪西发布了新的文献求助10
5秒前
5秒前
黎黎完成签到 ,获得积分10
6秒前
科研通AI5应助8888拉采纳,获得10
7秒前
白鹭立雪发布了新的文献求助10
7秒前
江蓠虽晚关注了科研通微信公众号
7秒前
香蕉觅云应助小毛毛采纳,获得10
7秒前
科研通AI5应助茹ru采纳,获得10
8秒前
9秒前
心空完成签到,获得积分10
9秒前
宇智波梅钢蛋儿完成签到,获得积分10
9秒前
科研小白完成签到,获得积分10
10秒前
10秒前
Mtx3098520564发布了新的文献求助10
10秒前
徐彬荣发布了新的文献求助20
11秒前
11秒前
123完成签到,获得积分10
11秒前
无花果应助5cdc采纳,获得10
12秒前
13秒前
丘比特应助tina采纳,获得10
13秒前
15秒前
16秒前
17秒前
17秒前
17秒前
17秒前
18秒前
18秒前
上官若男应助Anita采纳,获得10
18秒前
Owen应助鸿十三陵采纳,获得10
19秒前
19秒前
19秒前
lulululululu发布了新的文献求助10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732331
求助须知:如何正确求助?哪些是违规求助? 3276613
关于积分的说明 9997784
捐赠科研通 2992192
什么是DOI,文献DOI怎么找? 1642047
邀请新用户注册赠送积分活动 780144
科研通“疑难数据库(出版商)”最低求助积分说明 748701