Parallelized computational 3D video microscopy of freely moving organisms at multiple gigapixels per second

计算机科学 计算机视觉 人工智能 卷积神经网络 视野 三维重建 帧速率 软件 程序设计语言
作者
Kevin C. Zhou,Mark Harfouche,Colin Cooke,Jaehee Park,Pavan Chandra Konda,Lucas Kreiß,Kanghyun Kim,Joakim Jönsson,Jed Doman,Paul Reamey,Veton Saliu,Clare B. Cook,Maxwell Zheng,Jack P. Bechtel,Aurélien Bègue,Matthew E. McCarroll,Jennifer Bagwell,Gregor Horstmeyer,Michel Bagnat,Roarke Horstmeyer
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2301.08351
摘要

To study the behavior of freely moving model organisms such as zebrafish (Danio rerio) and fruit flies (Drosophila) across multiple spatial scales, it would be ideal to use a light microscope that can resolve 3D information over a wide field of view (FOV) at high speed and high spatial resolution. However, it is challenging to design an optical instrument to achieve all of these properties simultaneously. Existing techniques for large-FOV microscopic imaging and for 3D image measurement typically require many sequential image snapshots, thus compromising speed and throughput. Here, we present 3D-RAPID, a computational microscope based on a synchronized array of 54 cameras that can capture high-speed 3D topographic videos over a 135-cm^2 area, achieving up to 230 frames per second at throughputs exceeding 5 gigapixels (GPs) per second. 3D-RAPID features a 3D reconstruction algorithm that, for each synchronized temporal snapshot, simultaneously fuses all 54 images seamlessly into a globally-consistent composite that includes a coregistered 3D height map. The self-supervised 3D reconstruction algorithm itself trains a spatiotemporally-compressed convolutional neural network (CNN) that maps raw photometric images to 3D topography, using stereo overlap redundancy and ray-propagation physics as the only supervision mechanism. As a result, our end-to-end 3D reconstruction algorithm is robust to generalization errors and scales to arbitrarily long videos from arbitrarily sized camera arrays. The scalable hardware and software design of 3D-RAPID addresses a longstanding problem in the field of behavioral imaging, enabling parallelized 3D observation of large collections of freely moving organisms at high spatiotemporal throughputs, which we demonstrate in ants (Pogonomyrmex barbatus), fruit flies, and zebrafish larvae.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ZOE完成签到,获得积分0
1秒前
菌皆完成签到,获得积分10
1秒前
不问归期的风完成签到,获得积分0
1秒前
123456lyf发布了新的文献求助10
2秒前
江边鸟发布了新的文献求助10
3秒前
智商无下限完成签到,获得积分10
3秒前
Lucas应助樱悼柳雪采纳,获得10
4秒前
无限的依凝完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
xiaoming完成签到,获得积分10
5秒前
Tracy发布了新的文献求助10
6秒前
大渡河完成签到,获得积分10
6秒前
萧时完成签到 ,获得积分10
6秒前
6秒前
佳雪儿发布了新的文献求助30
8秒前
8秒前
坤坤探花发布了新的文献求助10
10秒前
10秒前
10秒前
fleurie发布了新的文献求助10
10秒前
微血管完成签到,获得积分10
10秒前
10秒前
11秒前
vivi完成签到,获得积分0
11秒前
量子星尘发布了新的文献求助10
11秒前
jewel9发布了新的文献求助10
11秒前
zl987发布了新的文献求助10
11秒前
俱乐部完成签到,获得积分10
12秒前
12秒前
健壮听露发布了新的文献求助10
12秒前
胖胖发布了新的文献求助10
12秒前
loong应助Felix0917采纳,获得20
13秒前
13秒前
快乐科研完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728534
求助须知:如何正确求助?哪些是违规求助? 5313250
关于积分的说明 15314452
捐赠科研通 4875726
什么是DOI,文献DOI怎么找? 2618947
邀请新用户注册赠送积分活动 1568530
关于科研通互助平台的介绍 1525171