Development of a Dual‐Plane MRI‐Based Deep Learning Model to Assess the 1‐Year Postoperative Outcomes in Lumbar Disc Herniation After Tubular Microdiscectomy

医学 磁共振成像 曼惠特尼U检验 精确检验 矢状面 腰椎 人口 核医学 放射科 外科 内科学 环境卫生
作者
Kaifeng Wang,Fabin Lin,Ziying Liao,Yongjiang Wang,Tingxin Zhang,Rui Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29639
摘要

Background Tubular microdiscectomy (TMD) is a treatment for lumbar disc herniation (LDH). Although the combination of MRI and deep learning (DL) has shown promise, its application in evaluating postoperative outcomes in TMD has not been fully explored. Purpose/Hypothesis To evaluate whether integrating preoperative dual‐plane MRI‐based DL features with clinical features can assess 1‐year outcomes in TMD for LDH. Study Type Retrospective. Population/Subjects The study involved 548 patients who underwent TMD between January 2016 and January 2021. Training set (N = 305, mean age 51.85 ± 13.84 years, 56.4% male). Internal validation set (N = 131, mean age 51.85 ± 13.84 years, 54.2% male). External validation set (N = 112, mean age 51.54 ± 14.43 years, 50.9% male). Field Strength/Sequence 3 T MRI with sagittal and transverse T 2 ‐weighted sequences (Fast Spin Echo). Assessment Ground truth labels were based on improvement rate in 1‐year Japanese Orthopaedic Association (JOA) scores. Information on 42 preoperative clinical features was collected. The largest protrusions were identified from T 2 MRI by three clinicians and were used to train deep learning models (ResNet50, ResNet101, and ResNet152) to extract DL features. After feature selection, three models were built, namely, clinical, DL, and combined models. Statistical Tests Chi‐square or Fisher's exact tests was used for group comparisons. Quantitative differences were analyzed using the t ‐test or Mann–Whitney U test. P ‐values <0.05 were considered significant. Models were validated on internal and external datasets using metrics such as the area under the curve (AUC). Results The AUCs of the clinical models achieved 0.806 (internal) and 0.779 (external). ResNet152 performed best in three DL models, with AUCs of 0.858 (internal) and 0.834 (external). The combined model achieved AUCs of 0.889 (internal) and 0.857 (external). Data Conclusion A model combining preoperative dual‐plane MRI DL features and clinical features can assess 1‐year outcomes of TMD for LDH. Evidence Level 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助魏伯安采纳,获得10
1秒前
1秒前
神可馨完成签到 ,获得积分10
2秒前
Hangerli发布了新的文献求助20
2秒前
HealthyCH完成签到,获得积分10
2秒前
li完成签到,获得积分10
3秒前
4秒前
ononon发布了新的文献求助10
6秒前
6秒前
liu完成签到,获得积分10
8秒前
LWJ发布了新的文献求助10
9秒前
10秒前
大反应釜完成签到,获得积分10
10秒前
TT发布了新的文献求助10
13秒前
Jenny发布了新的文献求助10
15秒前
15秒前
完美凝竹发布了新的文献求助10
15秒前
我是站长才怪应助细腻沅采纳,获得10
16秒前
JG完成签到 ,获得积分10
16秒前
hhh完成签到,获得积分20
16秒前
科研通AI5应助想瘦的海豹采纳,获得10
17秒前
随性完成签到 ,获得积分10
17秒前
自由的信仰完成签到,获得积分10
18秒前
20秒前
21秒前
21秒前
夏夏发布了新的文献求助10
22秒前
打打应助Hangerli采纳,获得10
24秒前
完美凝竹完成签到,获得积分10
25秒前
zfzf0422发布了新的文献求助10
26秒前
蜘蛛道理完成签到 ,获得积分10
26秒前
冷傲迎梦发布了新的文献求助10
27秒前
852应助MEME采纳,获得10
27秒前
Godzilla发布了新的文献求助10
27秒前
大模型应助咕噜仔采纳,获得10
28秒前
蒋时晏应助pharmstudent采纳,获得30
28秒前
29秒前
忘羡222发布了新的文献求助20
30秒前
魏伯安发布了新的文献求助10
30秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824