Development of a Dual‐Plane MRI‐Based Deep Learning Model to Assess the 1‐Year Postoperative Outcomes in Lumbar Disc Herniation After Tubular Microdiscectomy

医学 磁共振成像 曼惠特尼U检验 精确检验 矢状面 腰椎 人口 核医学 放射科 外科 内科学 环境卫生
作者
Kaifeng Wang,Fabin Lin,Ziying Liao,Yongjiang Wang,Tingxin Zhang,Rui Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29639
摘要

Background Tubular microdiscectomy (TMD) is a treatment for lumbar disc herniation (LDH). Although the combination of MRI and deep learning (DL) has shown promise, its application in evaluating postoperative outcomes in TMD has not been fully explored. Purpose/Hypothesis To evaluate whether integrating preoperative dual‐plane MRI‐based DL features with clinical features can assess 1‐year outcomes in TMD for LDH. Study Type Retrospective. Population/Subjects The study involved 548 patients who underwent TMD between January 2016 and January 2021. Training set (N = 305, mean age 51.85 ± 13.84 years, 56.4% male). Internal validation set (N = 131, mean age 51.85 ± 13.84 years, 54.2% male). External validation set (N = 112, mean age 51.54 ± 14.43 years, 50.9% male). Field Strength/Sequence 3 T MRI with sagittal and transverse T 2 ‐weighted sequences (Fast Spin Echo). Assessment Ground truth labels were based on improvement rate in 1‐year Japanese Orthopaedic Association (JOA) scores. Information on 42 preoperative clinical features was collected. The largest protrusions were identified from T 2 MRI by three clinicians and were used to train deep learning models (ResNet50, ResNet101, and ResNet152) to extract DL features. After feature selection, three models were built, namely, clinical, DL, and combined models. Statistical Tests Chi‐square or Fisher's exact tests was used for group comparisons. Quantitative differences were analyzed using the t ‐test or Mann–Whitney U test. P ‐values <0.05 were considered significant. Models were validated on internal and external datasets using metrics such as the area under the curve (AUC). Results The AUCs of the clinical models achieved 0.806 (internal) and 0.779 (external). ResNet152 performed best in three DL models, with AUCs of 0.858 (internal) and 0.834 (external). The combined model achieved AUCs of 0.889 (internal) and 0.857 (external). Data Conclusion A model combining preoperative dual‐plane MRI DL features and clinical features can assess 1‐year outcomes of TMD for LDH. Evidence Level 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dahafei驳回了Ava应助
刚刚
1秒前
1秒前
1秒前
wwiee完成签到,获得积分10
1秒前
长情的大门完成签到,获得积分20
1秒前
北柠Irene完成签到,获得积分20
2秒前
qiqi77完成签到,获得积分10
3秒前
打打应助22222采纳,获得10
3秒前
man发布了新的文献求助10
4秒前
吖嘿吖嘿发布了新的文献求助10
5秒前
5秒前
北柠Irene发布了新的文献求助10
5秒前
Lucas应助智慧树小噗彤采纳,获得10
5秒前
脑洞疼应助ldj6670采纳,获得10
5秒前
6秒前
hivivian发布了新的文献求助20
6秒前
英俊的铭应助seebeg采纳,获得10
6秒前
安静严青发布了新的文献求助10
6秒前
酷酷念瑶发布了新的文献求助10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
zanilia应助科研通管家采纳,获得20
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得20
8秒前
所所应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得30
8秒前
华仔应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Cognitive Paradigms in Knowledge Organisation 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306839
求助须知:如何正确求助?哪些是违规求助? 2940658
关于积分的说明 8497925
捐赠科研通 2614820
什么是DOI,文献DOI怎么找? 1428526
科研通“疑难数据库(出版商)”最低求助积分说明 663442
邀请新用户注册赠送积分活动 648263