已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of a Dual‐Plane MRI‐Based Deep Learning Model to Assess the 1‐Year Postoperative Outcomes in Lumbar Disc Herniation After Tubular Microdiscectomy

医学 磁共振成像 曼惠特尼U检验 精确检验 矢状面 腰椎 人口 核医学 放射科 外科 内科学 环境卫生
作者
Kaifeng Wang,Fabin Lin,Ziying Liao,Yongjiang Wang,Tingxin Zhang,Rui Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29639
摘要

Background Tubular microdiscectomy (TMD) is a treatment for lumbar disc herniation (LDH). Although the combination of MRI and deep learning (DL) has shown promise, its application in evaluating postoperative outcomes in TMD has not been fully explored. Purpose/Hypothesis To evaluate whether integrating preoperative dual‐plane MRI‐based DL features with clinical features can assess 1‐year outcomes in TMD for LDH. Study Type Retrospective. Population/Subjects The study involved 548 patients who underwent TMD between January 2016 and January 2021. Training set (N = 305, mean age 51.85 ± 13.84 years, 56.4% male). Internal validation set (N = 131, mean age 51.85 ± 13.84 years, 54.2% male). External validation set (N = 112, mean age 51.54 ± 14.43 years, 50.9% male). Field Strength/Sequence 3 T MRI with sagittal and transverse T 2 ‐weighted sequences (Fast Spin Echo). Assessment Ground truth labels were based on improvement rate in 1‐year Japanese Orthopaedic Association (JOA) scores. Information on 42 preoperative clinical features was collected. The largest protrusions were identified from T 2 MRI by three clinicians and were used to train deep learning models (ResNet50, ResNet101, and ResNet152) to extract DL features. After feature selection, three models were built, namely, clinical, DL, and combined models. Statistical Tests Chi‐square or Fisher's exact tests was used for group comparisons. Quantitative differences were analyzed using the t ‐test or Mann–Whitney U test. P ‐values <0.05 were considered significant. Models were validated on internal and external datasets using metrics such as the area under the curve (AUC). Results The AUCs of the clinical models achieved 0.806 (internal) and 0.779 (external). ResNet152 performed best in three DL models, with AUCs of 0.858 (internal) and 0.834 (external). The combined model achieved AUCs of 0.889 (internal) and 0.857 (external). Data Conclusion A model combining preoperative dual‐plane MRI DL features and clinical features can assess 1‐year outcomes of TMD for LDH. Evidence Level 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
刚刚
2秒前
SKSK完成签到 ,获得积分10
4秒前
mofeng发布了新的文献求助10
7秒前
zzg完成签到,获得积分10
10秒前
lhw发布了新的文献求助10
20秒前
安详的惜梦完成签到 ,获得积分10
21秒前
星期八完成签到,获得积分10
23秒前
zoe发布了新的文献求助30
24秒前
mofeng完成签到,获得积分10
30秒前
所所应助科研通管家采纳,获得10
31秒前
小西米完成签到 ,获得积分10
31秒前
愉快山雁完成签到,获得积分10
32秒前
Zz完成签到 ,获得积分10
38秒前
44秒前
单纯的电灯胆完成签到,获得积分10
45秒前
慢慢发布了新的文献求助10
48秒前
why完成签到 ,获得积分10
52秒前
7Steven7完成签到 ,获得积分10
52秒前
53秒前
yttang完成签到 ,获得积分10
53秒前
zoe发布了新的文献求助10
58秒前
斯文败类应助杜兰特采纳,获得10
1分钟前
耶耶完成签到 ,获得积分10
1分钟前
sss完成签到 ,获得积分10
1分钟前
星辰大海完成签到 ,获得积分10
1分钟前
lhw发布了新的文献求助10
1分钟前
tjnksy完成签到,获得积分10
1分钟前
1分钟前
芽芽豆完成签到 ,获得积分10
1分钟前
1分钟前
杜兰特发布了新的文献求助10
1分钟前
Lucas完成签到,获得积分10
1分钟前
sorawing完成签到,获得积分10
1分钟前
Amadeus发布了新的文献求助10
1分钟前
zoe发布了新的文献求助30
1分钟前
1分钟前
墨辰完成签到 ,获得积分10
1分钟前
孤独箴言发布了新的文献求助10
1分钟前
陈晨完成签到,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963148
求助须知:如何正确求助?哪些是违规求助? 3509019
关于积分的说明 11144885
捐赠科研通 3242052
什么是DOI,文献DOI怎么找? 1791708
邀请新用户注册赠送积分活动 873118
科研通“疑难数据库(出版商)”最低求助积分说明 803621