A multi-stage method for defect detection of underwater structures based on deep learning

人工智能 计算机科学 计算机视觉 水下 分割 像素 目标检测 遥控水下航行器 移动机器人 机器人 地质学 海洋学
作者
Zhihua Wu,Airong Liu,Shuai Teng,Ching‐Tai Ng,Jialin Wang,Jiyang Fu,Haoxiang Zhou
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241301098
摘要

Underwater defect detection faces challenges such as difficulty in image acquisition, low precision in detection and inaccurate defect localization. This article presents a multi-stage method to address these issues. A custom-built remotely operated vehicle (ROV) with advanced path planning was used to collect images of underwater defects. An improved YOLOv8 network, integrating deformable convolution and a multi-head self-attention mechanism, significantly enhanced defect detection accuracy. Furthermore, an upgraded Deeplabv3+ semantic segmentation network with a densely connected atrous spatial pyramid pooling module was proposed for precise pixel-level mapping of defects, particularly elongated ones. A 3D reconstruction method based on structure from motion was developed to generate accurate 3D point clouds for precise defect localization. The experimental results demonstrated that the developed ROV, equipped with a high-resolution camera and a multi-source heterogeneous vision enhancement module, efficiently captured defect images and improved image quality in turbid water. The improved YOLOv8 achieved a 6.61% increase in mAP50, while the upgraded Deeplabv3+ showed a 4.19% increase in mean intersections over union. These enhancements enabled the integrated method to achieve pixel-level defect detection and segmentation, demonstrating significant advancements across all performance metrics and competitive frames per second for real-time applications. The successful visualization of defects in the 3D model validated the effectiveness and feasibility of the proposed multi-stage method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
雪鸽鸽发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
3秒前
科研通AI5应助朱一龙采纳,获得30
4秒前
SharonDu完成签到 ,获得积分10
5秒前
ayin完成签到,获得积分10
5秒前
6秒前
6秒前
啦啦啦完成签到,获得积分10
6秒前
coffee发布了新的文献求助10
7秒前
7秒前
科研混子发布了新的文献求助10
7秒前
咿咿呀呀发布了新的文献求助10
7秒前
酷酷碧发布了新的文献求助10
9秒前
飘逸宛丝完成签到,获得积分10
10秒前
qzaima发布了新的文献求助10
10秒前
米酒完成签到,获得积分10
12秒前
step_stone给step_stone的求助进行了留言
12秒前
乐乐应助ayin采纳,获得10
13秒前
无花果应助hhh采纳,获得10
15秒前
叁壹粑粑完成签到,获得积分10
16秒前
酷酷碧完成签到,获得积分10
16秒前
17秒前
磕盐民工完成签到,获得积分10
18秒前
18秒前
忘羡222发布了新的文献求助20
18秒前
我是老大应助TT采纳,获得10
20秒前
20秒前
20秒前
雪鸽鸽完成签到,获得积分10
21秒前
完美世界应助开心青旋采纳,获得10
21秒前
LD完成签到 ,获得积分10
23秒前
xjy完成签到 ,获得积分10
23秒前
qzaima完成签到,获得积分10
23秒前
24秒前
xueshufengbujue完成签到,获得积分10
24秒前
楼寒天发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824