A multi-stage method for defect detection of underwater structures based on deep learning

人工智能 计算机科学 计算机视觉 水下 分割 像素 目标检测 遥控水下航行器 移动机器人 机器人 地质学 海洋学
作者
Zhihua Wu,Airong Liu,Shuai Teng,Ching‐Tai Ng,Jialin Wang,Jiyang Fu,Haoxiang Zhou
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241301098
摘要

Underwater defect detection faces challenges such as difficulty in image acquisition, low precision in detection and inaccurate defect localization. This article presents a multi-stage method to address these issues. A custom-built remotely operated vehicle (ROV) with advanced path planning was used to collect images of underwater defects. An improved YOLOv8 network, integrating deformable convolution and a multi-head self-attention mechanism, significantly enhanced defect detection accuracy. Furthermore, an upgraded Deeplabv3+ semantic segmentation network with a densely connected atrous spatial pyramid pooling module was proposed for precise pixel-level mapping of defects, particularly elongated ones. A 3D reconstruction method based on structure from motion was developed to generate accurate 3D point clouds for precise defect localization. The experimental results demonstrated that the developed ROV, equipped with a high-resolution camera and a multi-source heterogeneous vision enhancement module, efficiently captured defect images and improved image quality in turbid water. The improved YOLOv8 achieved a 6.61% increase in mAP50, while the upgraded Deeplabv3+ showed a 4.19% increase in mean intersections over union. These enhancements enabled the integrated method to achieve pixel-level defect detection and segmentation, demonstrating significant advancements across all performance metrics and competitive frames per second for real-time applications. The successful visualization of defects in the 3D model validated the effectiveness and feasibility of the proposed multi-stage method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云游归尘完成签到 ,获得积分10
1秒前
wxxkx完成签到,获得积分10
1秒前
萍萍完成签到,获得积分10
3秒前
水深三英尺完成签到,获得积分10
5秒前
5秒前
从南到北完成签到,获得积分10
5秒前
6秒前
CipherSage应助稳重的寒安采纳,获得50
7秒前
囿于昼夜发布了新的文献求助10
9秒前
Haiqi发布了新的文献求助30
9秒前
汉堡包应助李哈哈采纳,获得10
10秒前
贪玩菲音完成签到,获得积分10
10秒前
李健的小迷弟应助eref采纳,获得10
10秒前
corre完成签到,获得积分10
11秒前
12秒前
12秒前
是木易呀应助lily采纳,获得10
13秒前
宇儿完成签到,获得积分10
13秒前
lkasjdfl完成签到,获得积分10
14秒前
复杂的书白完成签到,获得积分10
14秒前
高半青完成签到,获得积分10
15秒前
刻刻发布了新的文献求助10
15秒前
16秒前
囿于昼夜完成签到,获得积分10
16秒前
18岁中二少年完成签到,获得积分10
17秒前
xdx应助zhangfan采纳,获得10
17秒前
小小邱发布了新的文献求助10
18秒前
13656479046发布了新的文献求助10
18秒前
笑点低的小馒头完成签到,获得积分20
18秒前
默默的书蕾给默默的书蕾的求助进行了留言
18秒前
20秒前
20秒前
20秒前
JOKER完成签到,获得积分10
20秒前
21秒前
zzw完成签到,获得积分10
22秒前
22秒前
李哈哈发布了新的文献求助10
22秒前
小王完成签到,获得积分10
22秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292629
求助须知:如何正确求助?哪些是违规求助? 2928963
关于积分的说明 8439271
捐赠科研通 2601028
什么是DOI,文献DOI怎么找? 1419441
科研通“疑难数据库(出版商)”最低求助积分说明 660310
邀请新用户注册赠送积分活动 642965