The SAMgram: a novel local enhancement and targeted extraction strategy for weak bearing fault characteristics

方位(导航) 萃取(化学) 断层(地质) 材料科学 纳米技术 计算机科学 化学 地质学 色谱法 人工智能 地震学
作者
Zuhua Jiang,Zuhua Jiang,Xiangfeng Zhang,Chaoyong Ma,Yonggang Xu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241309311
摘要

Envelope analysis is one of the most commonly used methods in rolling bearing fault diagnosis. However, when a signal contains heavy noise, even if an appropriate frequency band is selected, the fault information can still be overwhelmed. Unlike traditional use of spectral amplitude modulation, a novel SAMgram is proposed in this article for the enhancement and extraction of weak bearing fault characteristics in a signal, where local spectral amplitude modulation (LSAM) is performed to highlight bearing fault components and improve the proportion of fault information. Meanwhile, a targeted indicator called normalized harmonic kurtosis is proposed to select an optimal modified filtered signal automatically by quantifying repetitive transient characteristics. To extend LSAM to practical applications, two spectrum segmentation strategies are provided based on scanning spectrum and trend component, named the scanning SAMgram and adaptive SAMgram, respectively, which aim at determining the optimal modified filtered signal for demodulation by searching for the combinations of frequency bands and magnitude orders. A simulated signal of bearing compound faults and experimental signals of bearing outer ring and inner ring faults indicate that the proposed method can not only select a frequency band related to bearing defect to eliminate interference of invalid components but also highlight fault characteristics in the selected frequency band and weaken the disturbance of noise, which is superior over traditional envelope analysis-based methods and more applicable for fault diagnosis of rolling bearings under complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alan完成签到,获得积分10
1秒前
bo关闭了bo文献求助
3秒前
庸人自扰发布了新的文献求助10
3秒前
Ava应助archer01采纳,获得10
4秒前
慕青应助songnvshi采纳,获得10
5秒前
SUR完成签到,获得积分0
7秒前
cocolu应助darkage采纳,获得10
8秒前
9秒前
谦让寻凝完成签到 ,获得积分10
10秒前
10秒前
桐桐应助毓凡采纳,获得10
11秒前
赤橙发布了新的文献求助10
12秒前
15秒前
汉堡包应助qi采纳,获得10
15秒前
科目三应助友好的谷兰采纳,获得10
16秒前
涛1118完成签到,获得积分20
16秒前
16秒前
嘿嘿完成签到,获得积分10
16秒前
16秒前
17秒前
19秒前
缥缈耷发布了新的文献求助10
19秒前
涛1118发布了新的文献求助10
19秒前
左左发布了新的文献求助10
20秒前
CodeCraft应助雪落六年yyds采纳,获得10
21秒前
望月发布了新的文献求助10
22秒前
archer01发布了新的文献求助10
23秒前
赤橙完成签到,获得积分10
24秒前
25秒前
动听剑心完成签到 ,获得积分10
27秒前
27秒前
qly应助volition采纳,获得10
27秒前
CipherSage应助archer01采纳,获得10
30秒前
www发布了新的文献求助10
30秒前
孙ym发布了新的文献求助10
31秒前
xingxing完成签到,获得积分10
31秒前
32秒前
qi发布了新的文献求助10
32秒前
33秒前
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316339
求助须知:如何正确求助?哪些是违规求助? 2948037
关于积分的说明 8539126
捐赠科研通 2624046
什么是DOI,文献DOI怎么找? 1435703
科研通“疑难数据库(出版商)”最低求助积分说明 665672
邀请新用户注册赠送积分活动 651532