The SAMgram: a novel local enhancement and targeted extraction strategy for weak bearing fault characteristics

方位(导航) 萃取(化学) 断层(地质) 材料科学 纳米技术 计算机科学 化学 地质学 色谱法 人工智能 地震学
作者
Zuhua Jiang,Zuhua Jiang,Xiangfeng Zhang,Chaoyong Ma,Yonggang Xu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:3
标识
DOI:10.1177/14759217241309311
摘要

Envelope analysis is one of the most commonly used methods in rolling bearing fault diagnosis. However, when a signal contains heavy noise, even if an appropriate frequency band is selected, the fault information can still be overwhelmed. Unlike traditional use of spectral amplitude modulation, a novel SAMgram is proposed in this article for the enhancement and extraction of weak bearing fault characteristics in a signal, where local spectral amplitude modulation (LSAM) is performed to highlight bearing fault components and improve the proportion of fault information. Meanwhile, a targeted indicator called normalized harmonic kurtosis is proposed to select an optimal modified filtered signal automatically by quantifying repetitive transient characteristics. To extend LSAM to practical applications, two spectrum segmentation strategies are provided based on scanning spectrum and trend component, named the scanning SAMgram and adaptive SAMgram, respectively, which aim at determining the optimal modified filtered signal for demodulation by searching for the combinations of frequency bands and magnitude orders. A simulated signal of bearing compound faults and experimental signals of bearing outer ring and inner ring faults indicate that the proposed method can not only select a frequency band related to bearing defect to eliminate interference of invalid components but also highlight fault characteristics in the selected frequency band and weaken the disturbance of noise, which is superior over traditional envelope analysis-based methods and more applicable for fault diagnosis of rolling bearings under complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助123采纳,获得10
2秒前
一支卓发布了新的文献求助10
2秒前
华仔应助yun采纳,获得10
2秒前
cyskdsn完成签到 ,获得积分10
3秒前
勤H完成签到,获得积分10
5秒前
天涯明月刀完成签到,获得积分10
5秒前
星星完成签到,获得积分10
7秒前
7秒前
KONG完成签到,获得积分10
8秒前
9秒前
静静在学呢完成签到,获得积分10
10秒前
兆兆发布了新的文献求助10
10秒前
11秒前
浮游应助一支卓采纳,获得10
11秒前
受伤听露完成签到 ,获得积分10
11秒前
慕青应助怕黑剑封采纳,获得10
12秒前
12秒前
德玛西亚发布了新的文献求助10
12秒前
HHW发布了新的文献求助10
12秒前
奋斗思烟完成签到 ,获得积分10
13秒前
自由的微风完成签到,获得积分10
15秒前
linkman发布了新的文献求助200
15秒前
木子完成签到,获得积分10
16秒前
小房子完成签到,获得积分10
18秒前
Nolan完成签到,获得积分10
18秒前
贪玩板栗发布了新的文献求助10
18秒前
20秒前
21秒前
甜甜的平蓝完成签到,获得积分10
22秒前
23秒前
23秒前
潇洒飞丹完成签到,获得积分10
24秒前
26秒前
27秒前
27秒前
Baywreath完成签到,获得积分10
28秒前
竹筏过海应助Lei采纳,获得30
28秒前
马皓发布了新的文献求助10
28秒前
29秒前
田字格发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714