The SAMgram: a novel local enhancement and targeted extraction strategy for weak bearing fault characteristics

方位(导航) 萃取(化学) 断层(地质) 材料科学 纳米技术 计算机科学 化学 地质学 色谱法 人工智能 地震学
作者
Zuhua Jiang,Zuhua Jiang,Xiangfeng Zhang,Chaoyong Ma,Yonggang Xu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:3
标识
DOI:10.1177/14759217241309311
摘要

Envelope analysis is one of the most commonly used methods in rolling bearing fault diagnosis. However, when a signal contains heavy noise, even if an appropriate frequency band is selected, the fault information can still be overwhelmed. Unlike traditional use of spectral amplitude modulation, a novel SAMgram is proposed in this article for the enhancement and extraction of weak bearing fault characteristics in a signal, where local spectral amplitude modulation (LSAM) is performed to highlight bearing fault components and improve the proportion of fault information. Meanwhile, a targeted indicator called normalized harmonic kurtosis is proposed to select an optimal modified filtered signal automatically by quantifying repetitive transient characteristics. To extend LSAM to practical applications, two spectrum segmentation strategies are provided based on scanning spectrum and trend component, named the scanning SAMgram and adaptive SAMgram, respectively, which aim at determining the optimal modified filtered signal for demodulation by searching for the combinations of frequency bands and magnitude orders. A simulated signal of bearing compound faults and experimental signals of bearing outer ring and inner ring faults indicate that the proposed method can not only select a frequency band related to bearing defect to eliminate interference of invalid components but also highlight fault characteristics in the selected frequency band and weaken the disturbance of noise, which is superior over traditional envelope analysis-based methods and more applicable for fault diagnosis of rolling bearings under complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助知性的睫毛膏采纳,获得10
1秒前
1秒前
wei完成签到,获得积分10
2秒前
561发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
华仔应助LX采纳,获得30
4秒前
阔达惜天应助等待凡英采纳,获得10
5秒前
无极微光应助冷静青文采纳,获得20
5秒前
lay完成签到,获得积分10
5秒前
6秒前
xxc发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
jackie发布了新的文献求助10
8秒前
汉堡包应助Plusonezzz采纳,获得30
9秒前
11秒前
11秒前
楼马完成签到 ,获得积分10
11秒前
LX完成签到,获得积分10
11秒前
12秒前
12秒前
www发布了新的文献求助10
12秒前
123完成签到,获得积分10
12秒前
ren发布了新的文献求助10
12秒前
peng完成签到,获得积分10
12秒前
12秒前
13秒前
许诺发布了新的文献求助10
13秒前
gyhk完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
111发布了新的文献求助10
16秒前
561完成签到,获得积分10
17秒前
澎湃发布了新的文献求助10
17秒前
liuwenjie发布了新的文献求助10
18秒前
18秒前
今后应助kk采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675662
求助须知:如何正确求助?哪些是违规求助? 4948205
关于积分的说明 15154348
捐赠科研通 4834937
什么是DOI,文献DOI怎么找? 2589774
邀请新用户注册赠送积分活动 1543545
关于科研通互助平台的介绍 1501282