The SAMgram: a novel local enhancement and targeted extraction strategy for weak bearing fault characteristics

方位(导航) 萃取(化学) 断层(地质) 材料科学 纳米技术 计算机科学 化学 地质学 色谱法 人工智能 地震学
作者
Zuhua Jiang,Zuhua Jiang,Xiangfeng Zhang,Chaoyong Ma,Yonggang Xu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:3
标识
DOI:10.1177/14759217241309311
摘要

Envelope analysis is one of the most commonly used methods in rolling bearing fault diagnosis. However, when a signal contains heavy noise, even if an appropriate frequency band is selected, the fault information can still be overwhelmed. Unlike traditional use of spectral amplitude modulation, a novel SAMgram is proposed in this article for the enhancement and extraction of weak bearing fault characteristics in a signal, where local spectral amplitude modulation (LSAM) is performed to highlight bearing fault components and improve the proportion of fault information. Meanwhile, a targeted indicator called normalized harmonic kurtosis is proposed to select an optimal modified filtered signal automatically by quantifying repetitive transient characteristics. To extend LSAM to practical applications, two spectrum segmentation strategies are provided based on scanning spectrum and trend component, named the scanning SAMgram and adaptive SAMgram, respectively, which aim at determining the optimal modified filtered signal for demodulation by searching for the combinations of frequency bands and magnitude orders. A simulated signal of bearing compound faults and experimental signals of bearing outer ring and inner ring faults indicate that the proposed method can not only select a frequency band related to bearing defect to eliminate interference of invalid components but also highlight fault characteristics in the selected frequency band and weaken the disturbance of noise, which is superior over traditional envelope analysis-based methods and more applicable for fault diagnosis of rolling bearings under complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静胜完成签到,获得积分10
1秒前
科研通AI6应助桃子采纳,获得10
1秒前
Fei_U完成签到,获得积分20
1秒前
Ava应助豆豆突采纳,获得10
2秒前
2秒前
3秒前
3秒前
wanci应助小董继续努力采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
Fei_U发布了新的文献求助10
5秒前
5秒前
5秒前
苏苏苏发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
苏苏苏发布了新的文献求助30
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618454
求助须知:如何正确求助?哪些是违规求助? 4703358
关于积分的说明 14922268
捐赠科研通 4757546
什么是DOI,文献DOI怎么找? 2550099
邀请新用户注册赠送积分活动 1512920
关于科研通互助平台的介绍 1474299