The SAMgram: a novel local enhancement and targeted extraction strategy for weak bearing fault characteristics

方位(导航) 萃取(化学) 断层(地质) 材料科学 纳米技术 计算机科学 化学 地质学 色谱法 人工智能 地震学
作者
Zuhua Jiang,Zuhua Jiang,Xiangfeng Zhang,Chaoyong Ma,Yonggang Xu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:3
标识
DOI:10.1177/14759217241309311
摘要

Envelope analysis is one of the most commonly used methods in rolling bearing fault diagnosis. However, when a signal contains heavy noise, even if an appropriate frequency band is selected, the fault information can still be overwhelmed. Unlike traditional use of spectral amplitude modulation, a novel SAMgram is proposed in this article for the enhancement and extraction of weak bearing fault characteristics in a signal, where local spectral amplitude modulation (LSAM) is performed to highlight bearing fault components and improve the proportion of fault information. Meanwhile, a targeted indicator called normalized harmonic kurtosis is proposed to select an optimal modified filtered signal automatically by quantifying repetitive transient characteristics. To extend LSAM to practical applications, two spectrum segmentation strategies are provided based on scanning spectrum and trend component, named the scanning SAMgram and adaptive SAMgram, respectively, which aim at determining the optimal modified filtered signal for demodulation by searching for the combinations of frequency bands and magnitude orders. A simulated signal of bearing compound faults and experimental signals of bearing outer ring and inner ring faults indicate that the proposed method can not only select a frequency band related to bearing defect to eliminate interference of invalid components but also highlight fault characteristics in the selected frequency band and weaken the disturbance of noise, which is superior over traditional envelope analysis-based methods and more applicable for fault diagnosis of rolling bearings under complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李成昊完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
hh发布了新的文献求助10
3秒前
may完成签到,获得积分10
3秒前
呆头鹅完成签到 ,获得积分10
3秒前
wenlon发布了新的文献求助10
3秒前
科研通AI6应助hahaha采纳,获得10
3秒前
3秒前
蹦蹦又跳跳完成签到,获得积分10
4秒前
地西泮完成签到,获得积分10
4秒前
xiahua发布了新的文献求助10
4秒前
4秒前
4秒前
孤独士晋完成签到,获得积分10
5秒前
黄茹发布了新的文献求助200
5秒前
123发布了新的文献求助10
5秒前
6秒前
SZH发布了新的文献求助10
6秒前
6秒前
独特觅儿完成签到,获得积分10
7秒前
kevin_kong完成签到,获得积分10
7秒前
Gaberil发布了新的文献求助10
7秒前
才下眉头完成签到,获得积分10
7秒前
zhoushishan发布了新的文献求助10
8秒前
雪媚娘完成签到,获得积分10
8秒前
田様应助棋子采纳,获得10
10秒前
liusj完成签到,获得积分10
11秒前
syalonyui发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
le完成签到,获得积分20
12秒前
桐桐应助jiangjiarui采纳,获得10
12秒前
12秒前
呆萌的小海豚完成签到,获得积分10
13秒前
Orange应助明亮的亦竹采纳,获得10
14秒前
阔达皮卡丘完成签到 ,获得积分10
15秒前
叶楼发布了新的文献求助20
16秒前
zgrmws应助帅气谷丝采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653193
求助须知:如何正确求助?哪些是违规求助? 4789427
关于积分的说明 15063229
捐赠科研通 4811788
什么是DOI,文献DOI怎么找? 2574069
邀请新用户注册赠送积分活动 1529802
关于科研通互助平台的介绍 1488465